把多項(xiàng)式x4一8x2+16分解因式,所得結(jié)果是( )
A.(x-2)2 (x+2)2 B. (x-4)2 (x+4)2 C.(x一4)2 D.(x-4)4
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
兩圓的半徑分別為3和7,圓心距為6,則兩圓的交點(diǎn)個(gè)數(shù)為 ( )A. 1個(gè) B. 2個(gè) C. 0個(gè) D. 以上都不對(duì)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在邊長為8的正方形ABCD中,點(diǎn)O為AD上一動(dòng)點(diǎn)(4<OA<8),以O為圓心,OA的長為半徑的圓交邊CD于點(diǎn)M,連接OM,過點(diǎn)M作⊙O的切線交邊BC于N.
(1)圖中是否存在與△ODM相似的三角形,若存在,請(qǐng)找出并給于證明。
(2)設(shè)DM = x,OA=R,求R關(guān)于x 的函數(shù)關(guān)系式;是否存在整數(shù)R,使得正方形ABCD內(nèi)部的扇形OAM圍成的圓錐地面周長為p ,若存在請(qǐng)求出此時(shí)DM的長;不存在,請(qǐng)說明理由。
(3)在動(dòng)點(diǎn)O逐漸向點(diǎn)D運(yùn)動(dòng)(OA逐漸增大)的過程中,△CMN的周長如何變化?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在直角坐標(biāo)系中,平行四邊形AOCD的邊OC在x軸上,邊AD與y軸交與點(diǎn)H,CD=10,。點(diǎn)E、F分別是邊AD和對(duì)角線OD上的動(dòng)點(diǎn)(點(diǎn)E不與A、D重合),
∠OEF=∠A=∠DOC,設(shè)AE=t,OF=s。
(1) 求直線DC的解析式;
(2) 求s關(guān)于t的函數(shù)關(guān)系式,并寫出t的取值范圍;
(3) 點(diǎn)E在邊AD上移動(dòng)的過程中,△OEF是否有可能成為一個(gè)等腰三角形?若有可能,請(qǐng)求出t的值,若不可能,請(qǐng)說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,直線與直線相交于點(diǎn).直線與y軸交于點(diǎn)A.一動(dòng)點(diǎn)從點(diǎn)A出發(fā),先沿平行于x軸的方向運(yùn)動(dòng),到達(dá)直線上的點(diǎn)處后,改為垂直于x軸的方向運(yùn)動(dòng),到達(dá)直線上的點(diǎn)處后,再沿平行于x軸的方向運(yùn)動(dòng),到達(dá)直線上的點(diǎn)處后,又改為垂直于x軸的方向運(yùn)動(dòng),到達(dá)直線上的點(diǎn)處后,仍沿平行于x軸的方向運(yùn)動(dòng),…… 照此規(guī)律運(yùn)動(dòng),動(dòng)點(diǎn)依次經(jīng)過點(diǎn),,,,,,…,,,…
則當(dāng)動(dòng)點(diǎn)到達(dá)處時(shí),運(yùn)動(dòng)的總路徑的長為( )(根據(jù)2011江干區(qū)模擬改編)
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
已知△ABC,用直尺和圓規(guī),根據(jù)下列要求作圖(保留作圖痕跡,不寫作法)
(1)作∠ABC的平分線BD交AC于點(diǎn)D;
(2)作線段BD的垂直平分線交AB于點(diǎn)E,交BC于點(diǎn)F。
由(1)(2)可得,你發(fā)現(xiàn)了BEDF是什么四邊形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
小明從家騎車上學(xué),先上坡到達(dá)A地后再下坡到達(dá)學(xué)校,所用的時(shí)間與路程如圖所示.如果返回時(shí),上、下坡的速度仍然保持不變,那么他從學(xué)校回到家需要的時(shí)間是( )
A. 8.6分鐘 B. 9分鐘 C. 12分鐘 D.16分鐘
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com