【題目】如圖,已知DE∥BCCD∠ACB的平分線,∠B70°∠ACB50°,求∠EDC∠BDC的度數(shù).

【答案】25度,85

【解析】試題分析:由CD∠ACB的平分線,∠ACB=50°,根據(jù)角平分線的性質(zhì),即可求得∠DCB的度數(shù),又由DE∥BC,根據(jù)兩直線平行,內(nèi)錯(cuò)角相等,即可求得∠EDC的度數(shù),根據(jù)兩直線平行,同旁內(nèi)角互補(bǔ),即可求得∠BDE的度數(shù),即可求得∠BDC的度數(shù).

試題解析:∵CD∠ACB的平分線,∠ACB=50°, ∴∠BCD=∠ACB=25°, ∵DE∥BC,

∴∠EDC=∠DCB=25°,∠BDE+∠B=180°, ∵∠B=70°, ∴∠BDE=110°,

∴∠BDC=∠BDE﹣∠EDC=110°﹣25°=85°∴∠EDC=25°∠BDC=85°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若-a=10,則a=____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某廠計(jì)劃生產(chǎn)A、B兩種產(chǎn)品共50件.已知A產(chǎn)品每件可獲利潤1200元,B產(chǎn)品每件可獲利潤700元,設(shè)生產(chǎn)兩種產(chǎn)品的獲利總額為y (元),生產(chǎn)A產(chǎn)品x (件).

(1)寫出y與x之間的函數(shù)關(guān)系式;

(2)若生產(chǎn)A、B兩種產(chǎn)品的件數(shù)均不少于10件,求總利潤的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)經(jīng)過A(﹣3,0)、B(5,0)、C(0,5)三點(diǎn),O為坐標(biāo)原點(diǎn)

(1)求此拋物線的解析式;

(2)若把拋物線y=ax2+bx+c(a≠0)向下平移個(gè)單位長(zhǎng)度,再向右平移n(n>0)個(gè)單位長(zhǎng)度得到新拋物線,若新拋物線的頂點(diǎn)M在△ABC內(nèi),求n的取值范圍;

(3)設(shè)點(diǎn)P在y軸上,且滿足∠OPA+∠OCA=∠CBA,求CP的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線與x軸、軸分別相交于點(diǎn)C、B,與直線相交于

點(diǎn)A.

(1)點(diǎn)B、點(diǎn)C和點(diǎn)A的坐標(biāo)分別是(0,   )、(  ,0)、(  ,   );

(2)求兩條直線與軸圍成的三角形的面積;

(3)在坐標(biāo)軸上是否存在一點(diǎn)Q,使△OAQ的面積等于6,若存在請(qǐng)直接寫出Q點(diǎn)的坐標(biāo),若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列各式計(jì)算正確的是(
A.2x4﹣x2=x2
B.(2x24=8x8
C.x2x3=x6
D.(﹣x)6÷(﹣x)2=x4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】同一時(shí)刻,同一地區(qū),太陽光下物體的高度與投影長(zhǎng)的比是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,AD∥BC,BA⊥AD,BC=DC,BE⊥CD于點(diǎn)E.

(1)求證:△ABD≌△EBD;

(2)過點(diǎn)E作EF∥DA,交BD于點(diǎn)F,連接AF.求證:四邊形AFED是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點(diǎn)(﹣1,y1)、(2,y2)是直線y=﹣2x+1上的兩點(diǎn),則y1y2(填“>”或“=”或“<”)

查看答案和解析>>

同步練習(xí)冊(cè)答案