【題目】如圖,一枚棋子放在七角棋盤(pán)的第0號(hào)角,現(xiàn)依逆時(shí)針?lè)较蛞苿?dòng)這枚棋子,其各步依次移動(dòng)1,2,3,…,n個(gè)角,如第一步從0號(hào)角移動(dòng)到第1號(hào)角,第二步從第1號(hào)角移動(dòng)到第3號(hào)角,第三步從第3號(hào)角移動(dòng)到第6號(hào)角,….若這枚棋子不停地移動(dòng)下去,則這枚棋子永遠(yuǎn)不能到達(dá)的角的個(gè)數(shù)是( )

A.0 B.1 C.2 D.3

【答案】D

【解析】

試題因棋子移動(dòng)了k次后走過(guò)的總格數(shù)是1+2+3+…+k=k(k+1),然后根據(jù)題目中所給的第k次依次移動(dòng)k個(gè)頂點(diǎn)的規(guī)則,可得到不等式最后求得解.

因棋子移動(dòng)了k次后走過(guò)的總格數(shù)是1+2+3+…+k=k(k+1),應(yīng)停在第k(k+1)-7p格,

這時(shí)P是整數(shù),且使0≤k(k+1)-7p≤6,分別取k=1,2,3,4,5,6,7時(shí),

k(k+1)-7p=1,3,6,3,1,0,0,發(fā)現(xiàn)第2,4,5格沒(méi)有停棋,

若7<k≤10,設(shè)k=7+t(t=1,2,3)代入可得,k(k+1)-7p=7m+t(t+1),

由此可知,停棋的情形與k=t時(shí)相同,

故第2,4,5格沒(méi)有停棋,

即這枚棋子永遠(yuǎn)不能到達(dá)的角的個(gè)數(shù)是3.

故選D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,分別垂直平分,交、兩點(diǎn),相交于點(diǎn).

(1)的周長(zhǎng)為15 cm,求的長(zhǎng).

(2),求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】方格紙中每個(gè)小方格都是邊長(zhǎng)為1的正方形,我們把以格點(diǎn)連線為邊的多邊形稱為格點(diǎn)多邊形

1)在圖1中確定格點(diǎn)D,并畫(huà)出一個(gè)以A、B、C、D為頂點(diǎn)的四邊形,使其為軸對(duì)稱圖形(一種情況即可);

2)直接寫(xiě)出圖2FGH的面積是   

3)在圖3中畫(huà)一個(gè)格點(diǎn)正方形,使其面積等于17

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,直線l:y=x+m與x軸、y軸分別交于點(diǎn)A和點(diǎn)B(0,﹣1),拋物線y=x2+bx+c經(jīng)過(guò)點(diǎn)B,與直線l的另一個(gè)交點(diǎn)為C(4,n).

(1)求n的值和拋物線的解析式;

(2)點(diǎn)D在拋物線上,DEy軸交直線l于點(diǎn)E,點(diǎn)F在直線l上,且四邊形DFEG為矩形(如圖2),設(shè)點(diǎn)D的橫坐標(biāo)為t(0t4),矩形DFEG的周長(zhǎng)為p,求p與t的函數(shù)關(guān)系式以及p的最大值;

(3)將AOB繞平面內(nèi)某點(diǎn)M旋轉(zhuǎn)90°或180°,得到A1O1B1,點(diǎn)A、O、B的對(duì)應(yīng)點(diǎn)分別是點(diǎn)A1、O1、B1.若A1O1B1的兩個(gè)頂點(diǎn)恰好落在拋物線上,那么我們就稱這樣的點(diǎn)為“落點(diǎn)”,請(qǐng)直接寫(xiě)出“落點(diǎn)”的個(gè)數(shù)和旋轉(zhuǎn)180°時(shí)點(diǎn)A1的橫坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,有8×8的正方形網(wǎng)格,每個(gè)小正方形邊長(zhǎng)為1,按要求操作并計(jì)算。

1)在8×8的正方形網(wǎng)格中建立平面直角坐標(biāo)系,使點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為;

2)將點(diǎn)向下平移5個(gè)單位,再關(guān)于軸對(duì)稱得到點(diǎn),則點(diǎn)坐標(biāo)為(________________);

3)畫(huà)出三角形,并求其面積。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知如圖,在平面直角坐標(biāo)系中

1作出ABC關(guān)于軸對(duì)稱的,并寫(xiě)出三個(gè)頂點(diǎn)的坐標(biāo) ( 。,( 。( 。;

2直接寫(xiě)出ABC的面積為 ;

3軸上畫(huà)點(diǎn)P使PA+PC最小

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b(k0)的圖象與反比例函雙y=(m0)的陽(yáng)象交于點(diǎn)c(n,3),與x軸、y軸分別交于點(diǎn)A、B,過(guò)點(diǎn)CCMx軸,垂足為M,若tanCAM=,OA=2.

(1)求反比例函數(shù)和一次函數(shù)的解析式;

(2)點(diǎn)D是反比例函數(shù)圖象在第三象限部分上的一點(diǎn),且到x軸的距離是3,連接AD、BD,求△ABD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)A是反比例函數(shù)y=的圖象在第一象限上的動(dòng)點(diǎn),連結(jié)AO并延長(zhǎng)交另一分支于點(diǎn)B,以AB為邊作等邊△ABC使點(diǎn)C落在第二象限,且邊BCx軸于點(diǎn)D,若△ACD與△ABD的面積之比為1:2,則點(diǎn)C的坐標(biāo)為( 。

A. (﹣3,2 B. (﹣5, C. (﹣6, D. (﹣3,2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AD為∠BAC的平分線,添下列條件后,不能證明△ABD≌△ACD的是(  )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案