【題目】武漢市某校實行學案式教學,需印制若干份數(shù)學學案.印刷廠有甲、乙兩種收費方式,除按印刷份數(shù)收取印刷費外,甲種方式還需收取制版費而乙種不需要,兩種印刷方式的費用y(元)與印刷份數(shù)x(份)之間的關系如圖所示
(1) 求甲、乙兩種收費方式的函數(shù)關系式;
(2) 當印刷多少份學案時,兩種印刷方式收費一樣?
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,正方形ABCD的邊長為4,以AB所在的直線為x軸,以AD所在的直線為y軸建立平面直角坐標系反比例函數(shù)的圖象與CD交于E點,與CB交于F點.
(1)求證:;
(2)若的面積為6,求反比例函數(shù)的解析式;
(3)在(2)的條件下,將沿x軸的正方向平移1個單位后得到,如圖2,線段與相交于點M,線段與BC相交于點N.求與正方形ABCD的重疊部分面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,點D,E分別在AB,AC上,CE=BC,連接CD,將線段CD繞點C按順時針方向旋轉90°后得CF,連接EF.
(1)補充完成圖形;
(2)若EF∥CD,求證:∠BDC=90°.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將一副三角尺的直角頂點疊放在點C處,∠D=30°,∠B=45°,求:
(1)若∠DCE=35°,求∠ACB的度數(shù);(2)若∠ACB=120°,求∠DCE的度數(shù).
(3)猜想∠ACB和∠DCE的關系,并說明理由;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知直線AB∥CD,直線EF與AB,CD分別相交于點E,F(xiàn).
(1)如圖1,若∠1=60°,求∠2,∠3的度數(shù).
(2)若點P是平面內的一個動點,連結PE,PF,探索∠EPF,∠PEB,∠PFD三個角之間的關系.
①當點P在圖(2)的位置時,可得∠EPF=∠PEB+∠PFD請閱讀下面的解答過程并填空(理由或數(shù)學式)
解:如圖2,過點P作MN∥AB
則∠EPM=∠PEB(_______)
∵AB∥CD(已知)MN∥AB(作圖)
∴MN∥CD(_______)
∴∠MPF=∠PFD (_______)
∴_____=∠PEB+∠PFD(等式的性質)
即:∠EPF=∠PEB+∠PFD
②拓展應用,當點P在圖3的位置時,此時∠EPF=80°,∠PEB=156°,則∠PFD=_____度.
③當點P在圖4的位置時,請直接寫出∠EPF,∠PEB,∠PFD三個角之間關系_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】中學生帶手機上學的現(xiàn)象越來越受到社會的關注,為此某記者隨機調查了市區(qū)某校七年級若干名中學生家長對這種現(xiàn)象的態(tài)度(態(tài)度分為:A.無所謂;B.基本贊成;C.贊成;D.反對).統(tǒng)計員在將測試數(shù)據(jù)繪制成圖表時發(fā)現(xiàn),反對漏統(tǒng)計6人,贊成漏統(tǒng)計4人,于是及時更正,從而形成如下圖表.請按正確數(shù)據(jù)解答下列各題:
家長對中學生帶手機上學各項態(tài)度人數(shù)統(tǒng)計表和統(tǒng)計圖:
態(tài)度 | 調整前人數(shù) | 調整后人數(shù) |
A.無所謂 | 30 | 30 |
B.基本贊成 | 40 | 40 |
C.贊成 | ||
D.反對 | 114 | 120 |
(1)此次抽樣調查中,共調查了多少名中學生家長;
(2)填寫統(tǒng)計表,并根據(jù)調整后數(shù)據(jù)補全折線統(tǒng)計圖;
(3)根據(jù)抽樣調查結果,請你估計該市城區(qū)6000名中學生家長中有多少名家長持反對態(tài)度?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】商家常將兩種糖混合成“什錦糖”出售.對“什錦糖”的定價用以下方法確定:
若A種糖的單價為a元/千克,B種糖的單價為b元/千克(a≠b),則m千克的A種糖與n千克的B種糖混合而成的“什錦糖”單價為元.
(1)當a=20,b=30時,
①將10千克的A種糖與15千克的B種糖混合而成的“什錦糖”單價為多少?
②在①的基礎上,若要將“什錦糖”單價提高2元,則需增加B種糖多少千克?
(2)若現(xiàn)有兩種“什錦糖”:一種是由10千克的A種糖和10千克的B種糖混合而成,另一種是由100元價值的A種糖和100元價值的B種糖混合而成,則這兩種“什錦糖”的單價哪一種更大?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y= x2﹣ x﹣2與x軸交于A,B兩點(點A在點B的右邊),與y軸交于點C.
(1)求點A,B,C的坐標;
(2)點D是此拋物線上的點,點E是其對稱軸上的點,求以A,B,D,E為頂點的平行四邊形的面積;
(3)此拋物線的對稱軸上是否存在點P,使得△ACP是等腰三角形?若存在,請求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,長方形OABC的OA邊在x軸的正半軸上,OC在y軸的正半軸上,拋物線y=ax2+bx經(jīng)過點B(1,4)和點E(3,0)兩點.
(1)求拋物線的解析式;
(2)若點D在線段OC上,且BD⊥DE,BD=DE,求D點的坐標;
(3)在條件(2)下,在拋物線的對稱軸上找一點M,使得△BDM的周長為最小,并求△BDM周長的最小值及此時點M的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com