【題目】矩形紙片ABCD,AB=7,BC=4,在矩形邊上有一點(diǎn)P,且DP=3.將矩形紙片折疊,使點(diǎn)B與點(diǎn)P重合,折痕所在直線交矩形兩邊于點(diǎn)E、F,則EF=__________________.
【答案】或
【解析】
如圖1,當(dāng)點(diǎn)P在CD上時(shí),由折疊的性質(zhì)得到四邊形PFBE是正方形,EF過(guò)點(diǎn)C,根據(jù)勾股定理即可得到結(jié)果;如圖2當(dāng)點(diǎn)P在AD上時(shí),過(guò)E作EQ⊥AB于Q,根據(jù)勾股定理得到PB的長(zhǎng),推出△ABP∽△EFQ,列比例式即可得到結(jié)果.
如圖1,當(dāng)點(diǎn)P在CD上時(shí),
∵PD=3,CD=AB=7,
∴CP=4,
∵EF垂直平分PB,
∴四邊形PFBE是正方形,EF過(guò)點(diǎn)C,
∴EF=
如圖2,當(dāng)點(diǎn)P在AD上時(shí),過(guò)E作EQ⊥AB于Q,
∵PD=3,AD=4,
∴AP=1,
∴PB=
∵EF垂直平分PB,
∴∠1=∠2,
∵∠A=∠EQF,
∴△ABP∽△EFQ,
∴,即
解得EF=
綜上所述:EF長(zhǎng)為或
故答案為:或
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】A城有肥料200t,B城有肥料300t.現(xiàn)要把這些肥料全部運(yùn)往C,D兩鄉(xiāng),從A城往C,D兩鄉(xiāng)運(yùn)肥料的費(fèi)用分別為20元/t和25元/t;從B城往C,D兩鄉(xiāng)運(yùn)肥料的費(fèi)用分別為15元/t和24元/t.現(xiàn)C鄉(xiāng)需要肥料240t,D鄉(xiāng)需要肥料260t.設(shè)從A城調(diào)往C鄉(xiāng)肥料xt.
(1)根據(jù)題意,填寫(xiě)下表:
(2)設(shè)調(diào)運(yùn)肥料的總運(yùn)費(fèi)y(單位:元)是x的函數(shù),求y與x的函數(shù)解析式;
(3)請(qǐng)根據(jù)(2)給出完成調(diào)運(yùn)任務(wù)總費(fèi)用最少的調(diào)運(yùn)方案,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知如圖,是的直徑,點(diǎn)在上,且,點(diǎn)是外一點(diǎn),與相切于點(diǎn),連接,過(guò)點(diǎn)作交于點(diǎn),連接交于點(diǎn).
(1)求證:;
(2)求證:是的切線;
(3)若,,連接,求的長(zhǎng);
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】服裝店準(zhǔn)備購(gòu)進(jìn)甲乙兩種服裝共100件,費(fèi)用不得超過(guò)7500元.甲種服裝每件進(jìn)價(jià)80元,每件售價(jià)120元;乙種服裝每件進(jìn)價(jià)60元,每件售價(jià)90元.
(Ⅰ)設(shè)購(gòu)進(jìn)甲種服裝件,試填寫(xiě)下表.
表一
購(gòu)進(jìn)甲種服裝的數(shù)量/件 | 10 | 20 | … | |
購(gòu)進(jìn)甲種服裝所用費(fèi)用/元 | 800 | 1600 | … | |
購(gòu)進(jìn)乙種服裝所用費(fèi)用/元 | 5400 | … |
表二
購(gòu)進(jìn)甲種服裝的數(shù)量/件 | 10 | 20 | … | |
甲種服裝獲得的利潤(rùn)/元 | 800 | … | ||
乙種服裝獲得的利潤(rùn)/元 | 2700 | 2400 | … |
(Ⅱ)給出能夠獲得最大利潤(rùn)的進(jìn)貨方案,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A坐標(biāo)為(﹣2,0),∠OAB=90°,∠AOB=30°,將△OAB繞點(diǎn)O按順時(shí)針?lè)较蛐D(zhuǎn),旋轉(zhuǎn)角為α(0°<α≤150°),在旋轉(zhuǎn)過(guò)程中,點(diǎn)A、B的對(duì)應(yīng)點(diǎn)分別為點(diǎn)A′、B′.
(1)如圖1,當(dāng)α=60°時(shí),直接寫(xiě)出點(diǎn)A′ 、B′ 的坐標(biāo);
(2)如圖2,當(dāng)α=135°時(shí),過(guò)點(diǎn)B′作AB的平行線交AA′延長(zhǎng)線于點(diǎn)C,連接BC,AB′.
①判斷四邊形AB′CB的形狀,并說(shuō)明理由,
②求此時(shí)點(diǎn)A′和點(diǎn)B′的坐標(biāo);
(3)當(dāng)α由30°旋轉(zhuǎn)到150°時(shí),(2)中的線段B′C也隨之移動(dòng),請(qǐng)求出B′C所掃過(guò)的區(qū)域的面積?(直接寫(xiě)出結(jié)果即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知一個(gè)直角三角形紙片ACB,其中∠ACB=90°,AC=4,BC=3,E、F分別是AC、AB邊上的點(diǎn),連接EF.
(1)如圖①,若將紙片ACB的一角沿EF折疊,折疊后點(diǎn)A落在AB邊上的點(diǎn)D處,且使S四邊形ECBF=3S△EDF,AE的長(zhǎng)為 ;
(2)如圖②,若將紙片ACB的一角沿EF折疊,折疊后點(diǎn)A落在BC邊上的點(diǎn)M處,且使MF∥CA.
①試判斷四邊形AEMF的形狀,并證明你的結(jié)論;
②求EF的長(zhǎng);
(3)如圖③,若FE的延長(zhǎng)線與BC的延長(zhǎng)線交于點(diǎn)N,CN=1,CE=,則= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,以AB為直徑的⊙O交△ABC的邊AC于D、BC于E,過(guò)D作⊙O的切線交BC于F,交BA延長(zhǎng)線于G,且DF⊥BC.
(1)求證:BA=BC;
(2)若AG=2,cosB=,求DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一艘船由A港沿北偏東65°方向航行km至B港,然后再沿北偏西40°方向航行至C港,C港在A港北偏東20°方向.
求:(1)∠C的度數(shù);
(2)A,C兩港之間的距離為多少km.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖在平面直角坐標(biāo)系中,將△ABO繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到△AB1C1的位置,點(diǎn)B、O分別落在點(diǎn)B1、C1處,點(diǎn)B1在x軸上,再將△AB1C1繞點(diǎn)B1順時(shí)針旋轉(zhuǎn)到△A1B1C2的位置,點(diǎn)C2在x軸上,將△A1B1C2繞點(diǎn)C2順時(shí)針旋轉(zhuǎn)到△A2B2C2的位置,點(diǎn)A2在x軸上,依次進(jìn)行下去…若點(diǎn)A(,0),B(0,2),則點(diǎn)B2018的坐標(biāo)為( 。
A. (6048,0)B. (6054,0)C. (6048,2)D. (6054,2)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com