(本題滿分12分)
如圖,在平面直角坐標(biāo)系中,已知拋物線軸于兩點(diǎn),交軸于點(diǎn).

(1)求此拋物線的解析式;
(2)若此拋物線的對稱軸與直線交于點(diǎn)D,作⊙D與x軸相切,⊙D交軸于點(diǎn)E、F兩點(diǎn),求劣弧EF的長;
(3)P為此拋物線在第二象限圖像上的一點(diǎn),PG垂直于軸,垂足為點(diǎn)G,試確定P點(diǎn)的位置,使得△PGA的面積被直線AC分為1︰2兩部分.

(1)
(2)劣弧EF的長為:
(3)點(diǎn)P坐標(biāo)為時(shí),△PGA的面積被直線AC分成1︰2兩部分解析:
(本小題滿分12分)
解:(1)∵拋物線經(jīng)過點(diǎn),,
, 解得.
∴拋物線的解析式為:.          …………………………3分
(2)易知拋物線的對稱軸是.把x=4代入y=2x得y=8,∴點(diǎn)D的坐標(biāo)為(4,8).
∵⊙D與x軸相切,∴⊙D的半徑為8.                   …………………………4分
連結(jié)DE、DF,作DM⊥y軸,垂足為點(diǎn)M.
在Rt△MFD中,F(xiàn)D=8,MD=4.∴cos∠MDF=
∴∠MDF=60°,∴∠EDF=120°.                       …………………………6分
∴劣弧EF的長為:.                   …………………………7分
(3)設(shè)直線AC的解析式為y="kx+b. " ∵直線AC經(jīng)過點(diǎn).
,解得.∴直線AC的解析式為:. ………8分
設(shè)點(diǎn),PG交直線AC于N,
則點(diǎn)N坐標(biāo)為.∵.
∴①若PN︰GN=1︰2,則PG︰GN=3︰2,PG=GN.
=.
解得:m1=-3, m2=2(舍去).
當(dāng)m=-3時(shí),=.
∴此時(shí)點(diǎn)P的坐標(biāo)為.                        …………………………10分
②若PN︰GN=2︰1,則PG︰GN=3︰1, PG=3GN.
=.
解得:,(舍去).當(dāng)時(shí),=.
∴此時(shí)點(diǎn)P的坐標(biāo)為.
綜上所述,當(dāng)點(diǎn)P坐標(biāo)為時(shí),△PGA的面積被直線AC分成1︰2兩部分.                                              …………………12分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(本題滿分12分)

如圖,直角梯形ABCD中,ABDC,,,.動點(diǎn)M以每秒1個(gè)單位長的速度,從點(diǎn)A沿線段AB向點(diǎn)B運(yùn)動;同時(shí)點(diǎn)P以相同的速度,從點(diǎn)C沿折線C-D-A向點(diǎn)A運(yùn)動.當(dāng)點(diǎn)M到達(dá)點(diǎn)B時(shí),兩點(diǎn)同時(shí)停止運(yùn)動.過點(diǎn)M作直線lAD,與線段CD的交點(diǎn)為E,與折線A-C-B的交點(diǎn)為Q.點(diǎn)M運(yùn)動的時(shí)間為t(秒).

(1)當(dāng)時(shí),求線段的長;

(2)當(dāng)0<t<2時(shí),如果以C、P、Q為頂點(diǎn)的三角形為直角三角形,求t的值;

(3)當(dāng)t>2時(shí),連接PQ交線段AC于點(diǎn)R.請?zhí)骄?img width=28 height=43 src="http://thumb.zyjl.cn/pic1/imagenew/czsx/8/199768.png" >是否為定值,若是,試求這個(gè)定值;若不是,請說明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年初中畢業(yè)升學(xué)考試(貴州銅仁卷)數(shù)學(xué) 題型:解答題

(本題滿分12分)如圖,在邊長為2的正方形ABCD中,PAB的中點(diǎn),Q為邊CD上一動點(diǎn),設(shè)DQt(0≤t≤2),線段PQ的垂直平分線分別交邊AD、BC于點(diǎn)M、N,過QQEAB于點(diǎn)E,過MMFBC于點(diǎn)F
(1)當(dāng)t≠1時(shí),求證:△PEQ≌△NFM;
(2)順次連接P、MQ、N,設(shè)四邊形PMQN的面積為S,求出S與自變量t之間的函數(shù)關(guān)系式,并求S的最小值.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年上海市徐匯區(qū)中考一模數(shù)學(xué)卷 題型:解答題

(本題滿分12分)

如圖,的頂點(diǎn)A、B在二次函數(shù)的圖像上,又點(diǎn)A、B[分別在軸和軸上,ABO

1.(1)求此二次函數(shù)的解析式;(4分)

2.

 

 
(2)過點(diǎn)交上述函數(shù)圖像于點(diǎn),

點(diǎn)在上述函數(shù)圖像上,當(dāng)相似時(shí),求點(diǎn)的坐標(biāo).(8分)

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年高級中等學(xué)校招生考試數(shù)學(xué)卷(廣東珠海) 題型:解答題

(本題滿分12分)如圖1,拋物線與x軸交于A、C兩點(diǎn),與y軸交于B點(diǎn),與直線交于A、D兩點(diǎn)。

⑴直接寫出A、C兩點(diǎn)坐標(biāo)和直線AD的解析式;

⑵如圖2,質(zhì)地均勻的正四面體骰子的各個(gè)面上依次標(biāo)有數(shù)字-1、1、3、4.隨機(jī)拋擲這枚骰子兩次,把第一次著地一面的數(shù)字m記做P點(diǎn)的橫坐標(biāo),第二次著地一面的數(shù)字n記做P點(diǎn)的縱坐標(biāo).則點(diǎn)落在圖1中拋物線與直線圍成區(qū)域內(nèi)(圖中陰影部分,含邊界)的概率是多少?

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年高級中等學(xué)校招生全國統(tǒng)一考試數(shù)學(xué)卷(廣西桂林) 題型:解答題

(本題滿分12分)

如圖,直角梯形ABCD中,ABDC,,.動點(diǎn)M以每秒1個(gè)單位長的速度,從點(diǎn)A沿線段AB向點(diǎn)B運(yùn)動;同時(shí)點(diǎn)P以相同的速度,從點(diǎn)C沿折線C-D-A向點(diǎn)A運(yùn)動.當(dāng)點(diǎn)M到達(dá)點(diǎn)B時(shí),兩點(diǎn)同時(shí)停止運(yùn)動.過點(diǎn)M作直線lAD,與線段CD的交點(diǎn)為E,與折線A-C-B的交點(diǎn)為Q.點(diǎn)M運(yùn)動的時(shí)間為t(秒).

(1)當(dāng)時(shí),求線段的長;

(2)當(dāng)0<t<2時(shí),如果以C、P、Q為頂點(diǎn)的三角形為直角三角形,求t的值;

(3)當(dāng)t>2時(shí),連接PQ交線段AC于點(diǎn)R.請?zhí)骄?img src="http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/2012062023192556339203/SYS201206202322040008469979_ST.files/image007.png">是否為定值,若是,試求這個(gè)定值;若不是,請說明理由.

 

查看答案和解析>>

同步練習(xí)冊答案