【題目】某校為了解九年級學(xué)生體育測試情況,以901班學(xué)生的體育測試成績?yōu)闃颖,?/span>A.B.C.D四個等級進行統(tǒng)計,并將結(jié)果繪制如下兩幅統(tǒng)計圖,請你結(jié)合圖中所給信息解答下列問題:(A級:90分及以上;B級:75分~89分;C級:60分~74分;D級:60分以下.注:分數(shù)均為整數(shù)值)
(1)請把條形統(tǒng)計圖補充完整;
(2)求樣本中D級的學(xué)生人數(shù)占全班學(xué)生人數(shù)的百分比;
(3)求扇形統(tǒng)計圖中A級所在的扇形的圓心角度數(shù);
(4)若該校九年級有400名學(xué)生,且75分及以上記為“滿分”,請你用此樣本估計該校體育測試中獲得“滿分”的學(xué)生人數(shù).
【答案】(1)D級算出5人;(2)10%;(3);(4)240
【解析】
(1)先求出總?cè)藬?shù),再用總?cè)藬?shù)減去已知人數(shù)的級別求出D級人數(shù),補充統(tǒng)計圖即可,;
(2)用D級學(xué)生數(shù)除以總?cè)藬?shù)即可得到結(jié)論;
(3)根據(jù)A級的百分比乘360°即可;
(4)先求出樣本中75分以上的學(xué)生所占的百分比,再用九年級學(xué)生總數(shù)乘以這個百分比即可.
解:(1)全班學(xué)生人數(shù):10÷20%=50人,
D級的學(xué)生人數(shù):50-10-23-12=5人,
補全條形統(tǒng)計圖:
(2)樣本中D級的學(xué)生人數(shù)占全班學(xué)生人數(shù)的百分比為5÷50=10%;
(3)扇形統(tǒng)計圖中A級所在的扇形的圓心角度數(shù)為;
(4)人.
∴估計該校體育測試中獲得“滿分”的學(xué)生人數(shù)為264人.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點O是正方形ABCD兩條對角線的交點,分別延長CO到點G,OC到點E,使OG=2OD、OE=2OC,然后以OG、OE為鄰邊作正方形OEFG.
(1)如圖1,若正方形OEFG的對角線交點為M,求證:四邊形CDME是平行四邊形.
(2)正方形ABCD固定,將正方形OEFG繞點O逆時針旋轉(zhuǎn),得到正方形OE′F′G′,如圖2,連接AG′,DE′,求證:AG′=DE′,AG′⊥DE′;
(3)在(2)的條件下,正方形OE′F′G′的邊OG′與正方形ABCD的邊相交于點N,如圖3,設(shè)旋轉(zhuǎn)角為α(0°<α<180°),若△AON是等腰三角形,請直接寫出α的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,A、B、C、D是反比例函數(shù)y=(x>0)圖象上四個整數(shù)點(橫、縱坐標均為整數(shù)),分別過這些點向橫軸或縱軸作垂線段,以垂線段所在的正方形(如圖)的邊長為半徑作四分之一圓周的兩條弧,組成四個橄欖形(陰影部分),則這四個橄欖形的面積總和是__________(用含π的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知是邊長為4的等邊三角形,點D是射線BC上的動點,將AD繞點A逆時針方向旋轉(zhuǎn)得到AE,連接DE.
(1).如圖,猜想是_______三角形;(直接寫出結(jié)果)
(2).如圖,猜想線段CA、CE、CD之間的數(shù)量關(guān)系,并證明你的結(jié)論;
(3).①當BD=___________時,;(直接寫出結(jié)果)
②點D在運動過程中,的周長是否存在最小值?若存在.請直接寫出周長的最小值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某射擊運動員練習(xí)射擊,5次成績分別是:8、9、7、8、x(單位:環(huán)).下列說法中正確的是( 。
A. 若這5次成績的中位數(shù)為8,則x=8
B. 若這5次成績的眾數(shù)是8,則x=8
C. 若這5次成績的方差為8,則x=8
D. 若這5次成績的平均成績是8,則x=8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】老師布置了一個作業(yè),如下:已知:如圖1的對角線的垂直平分線交于點,交于點,交于點.求證:四邊形是菱形.
某同學(xué)寫出了如圖2所示的證明過程,老師說該同學(xué)的作業(yè)是錯誤的.請你解答下列問題:
(1)能找出該同學(xué)錯誤的原因嗎?請你指出來;
(2)請你給出本題的正確證明過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知正方形,為射線上的一點,以為邊作正方形,使點在線段的延長線上,連接
(1)如圖,若點在線段的延長線上,求證:;
(2)如圖,若點在線段的中點,連接,判斷的形狀,并說明理由;
(3)如圖,若點在邊上,連接,當平分時,設(shè),求度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AC=BC,點D, E, F分別是AB,AC, BC的中點,連接DE,DF.
(1)求證:四邊形DFCE是菱形;
(2)若∠A=75°,AC=4,求菱形DFCE的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com