已知,關(guān)于x的二次函數(shù),(k為正整數(shù)).

(1)若二次函數(shù)的圖象與x軸有兩個交點,求k的值.

(2)若關(guān)于x的一元二次方程(k為正整數(shù))有兩個不相等的整數(shù)解,點A(m,y1),B(m+1,y2),C(m+2,y3)都在二次函數(shù)(k為正整數(shù))圖象上,求使y1≤y2≤y3成立的m的取值范圍.

(3)將(2)中的拋物線平移,當頂點至原點時,直線y=2x+b交拋物線于A(-1,n)、B(2,t)兩點,問在y軸上是否存在一點C,使得△ABC的內(nèi)心在y軸上.若存在,求出點C的坐標;若不存在,請說明理由.

 

【答案】

(1)1、2; (2) m≥;(3)(0,-4).

【解析】

試題分析:(1)由二次函數(shù)的圖象與x軸有兩個交點,知一元二次方程有兩不相等的實數(shù)根,從而根的判別式大于0,解不等式求出正整數(shù)解即可;

(2)由關(guān)于x的一元二次方程(k為正整數(shù))有兩個不相等的整數(shù)解得到k=1,從而得到函數(shù)解析式為,進而根據(jù)y1≤y2≤y3列不等式組求解即可;

(3)根據(jù)軸對稱性質(zhì)求解即可.

試題解析:(1)∵二次函數(shù)的圖象與x軸有兩個交點 ,

∴△=16-8(k-1)>0,∴16-8k+8>0,解得k<3.

∵k為正整數(shù),∴k=1、2.

(2) ∵關(guān)于x的一元二次方程(k為正整數(shù))有兩個不相等的整數(shù)解,

∴k=1. ∴.

∴y1=2m2=4m, y2=2(m+1)2+4(m+1),y3=2(m+2)2+4(m+2)

,解得m≥.

(3) 存在.

因為內(nèi)心在軸上,所以∠ACO=∠BCO,找A點關(guān)于y軸的對稱點A ′(1,2),直線A ′B:y=6x-4,與y軸的交點即為所求C點,坐標為(0,-4).

考點:1. 二次函數(shù)的圖象與x軸交點問題;2. 一元二次方程根的判別式;3. 二次函數(shù)與不等式組;4.軸對稱的應(yīng)用.

 

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

已知:關(guān)于x的方程mx2-3(m-1)x+2m-3=0.
(1)求證:m取任何實數(shù)量,方程總有實數(shù)根;
(2)若二次函數(shù)y1=mx2-3(m-1)x+2m-3的圖象關(guān)于y軸對稱;
①求二次函數(shù)y1的解析式;
②已知一次函數(shù)y2=2x-2,證明:在實數(shù)范圍內(nèi),對于x的同一個值,這兩個函數(shù)所對應(yīng)的函數(shù)值y1≥y2均成立;
(3)在(2)條件下,若二次函數(shù)y3=ax2+bx+c的圖象經(jīng)過點(-5,0),且在實數(shù)范圍內(nèi),對于x的同一個值,這三個函數(shù)所對應(yīng)的函數(shù)值y1≥y3≥y2均成立,求二次函數(shù)y3=ax2+bx+c的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知關(guān)于x的二次函數(shù)y=ax2+2ax+7a-3在-2≤x≤5上的函數(shù)值始終是正的,則a的取值范圍(  )
A、a>
1
2
B、a<0或a>
1
14
C、a>
1
14
D、
1
14
<a<
1
2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知關(guān)于x的二次函數(shù)y=x2+(2k-1)x+k2-1.
(1)若關(guān)于x的一元二次方程x2+(2k-1)x+k2-1=0的兩根的平方和等于9,求k的值,并在直角坐標系(如圖)中畫出函數(shù)y=x2+(2k-1)x+k2-1的大致圖象;
(2)在(1)的條件下,設(shè)這個二次函數(shù)的圖象與x軸從左至右交于A、B兩點.問函數(shù)對稱軸右邊的圖象上,是否存在點M,使銳角△AMB的面積等于3.若存在,請求出點M的坐標;若不存在,請說明理由;
(3)在(1)、(2)條件下,若P點是二次函圖象上的點,且∠PAM=90°,求△APM的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知一次函數(shù)y1=2x,二次函數(shù)y2=mx2-3(m-1)x+2m-1的圖象關(guān)于y軸對稱,y2的頂點為A.
(1)求二次函數(shù)y2的解析式;
(2)將y2左右平移得到y(tǒng)3交y2于P點,過P點作直線l∥x軸交y3于點M,若△PAM為等腰三角形,求P點坐標;
(3)是否存在二次函數(shù)y4=ax2+bx+c,其圖象經(jīng)過點(-5,2),且對于任意一個實數(shù)x,這三個函數(shù)所對應(yīng)的函數(shù)值y1、y2、y4都有y1≤y4≤y2成立?若存在,求出函數(shù)y4的解析式;若不存在,請說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源:北京模擬題 題型:解答題

已知:關(guān)于x的方程mx2-3(m-1)x+2m-3=0。
(1)求證:m取任何實數(shù)時,方程總有實數(shù)根;
(2)若二次函數(shù)y1=mx2-3(m-1)x+2m-3的圖象關(guān)于y軸對稱,
①求二次函數(shù)y的解析式;
②已知一次函數(shù)y2=2x-2,證明:在實數(shù)范圍內(nèi),對于x的同一個值,這兩個函數(shù)所對應(yīng)的函數(shù)值y1≥y2均成立;
(3)在(2)條件下,若二次函數(shù)y3=ax2+bx+c的圖象經(jīng)過點(-5,0),且在實數(shù)范圍內(nèi),對于x的同一個值,這三個函數(shù)所對應(yīng)的函數(shù)值y1≥y3≥y2 均成立,求二次函數(shù)y3=ax2+bx+c的解析式。

查看答案和解析>>

同步練習冊答案