【題目】在3張正面分別寫有數(shù)字﹣2,﹣1,0的卡片,它們的背面完全相同,現(xiàn)將這3張卡片背面朝上洗勻.

(1)從中任意抽取一張卡片,則所抽卡片上數(shù)字的絕對值不大于1的概率是  ;

(2)先從中任意抽取一張卡片,以其正面數(shù)字作為a的值,然后再從剩余的卡片隨機(jī)抽一張,以其正面的數(shù)字作為b的值,請用列表法或畫樹狀圖法,求點Qa,b)在第三象限的概率.

【答案】(1);(2) .

【解析】試題分析:本題考查的是用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,列表法適合于兩步完成的事件,樹狀圖法適合兩步或兩步以上完成的事件.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.

試題解析:

解:(1); (2分)

(2)根據(jù)題意,列表如下:

-2

-1

0

-2

(-1,-2)

(0,-2)

-1

(-2,-1)

(0,-1)

0

(-2,0)

(-1,0)

一共有6種等可能情況,在第三象限的點有

(-2, -1),(-1,-2)共2個,(6分)

所以,點Qab)在第三象限的概率P= .(7分)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個不透明的口袋里裝有僅顏色不同的黑、白兩種顏色的球20只,某學(xué)習(xí)小組做摸球?qū)嶒灒畬⑶驍噭蚝髲闹须S機(jī)摸出一個球,記下顏色,再把它放回袋中,不斷重復(fù),下表是活動進(jìn)行中記下的一組數(shù)據(jù)

摸球的次數(shù)n

100

150

200

500

800

1000

摸到白球的次數(shù)m

58

96

116

295

484

601

摸到白球的頻率

0.58

0.64

0.58

0.59

0.605

0.601

(1)請你估計,當(dāng)n很大時,摸到白球的頻率將會接近 (精確到0.1).
(2)假如你去摸一次,你摸到白球的概率是 ,摸到黑球的概率是
(3)試估算口袋中黑、白兩種顏色的球有 只.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列圖案中既是中心對稱圖形,又是軸對稱圖形的是(  )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)用代數(shù)式表示:“x的2倍與y的平方的差”

(2)當(dāng)x=3,y= -1時,求(1)中代數(shù)式的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工人若每小時生產(chǎn)38個零件,在規(guī)定時間內(nèi)還有15個不能完成,若每小時生產(chǎn)42個零件,則可以超額完成5個,問:規(guī)定時間是多少?設(shè)規(guī)定時間為x小時,則可列方程為(  )

A. 38x﹣15=42x+5 B. 38x+15=42x﹣5 C. 42x+38x=15+5 D. 42x﹣38x=15﹣5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,對角線AC與BD相交于點O,MN過點O且與邊AD、BC分別交于點M和點N.
(1)請你判斷OM與ON的數(shù)量關(guān)系,并說明理由;
(2)過點D作DE∥AC交BC的延長線于E,當(dāng)AB=5,AC=6時,求△BDE的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某下崗職工購進(jìn)一批貨物,到集貿(mào)市場零售,已知賣出去的貨物數(shù)量x與售價y的關(guān)系如下表:

數(shù)量x(千克)

1

2

3

4

5

售價y(元)

3+0.1

6+0.2

9+0.3

12+0.4

15+0.5

寫出用x表示y的公式是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知點P(2,1)與點Q(2,﹣1),下列描述正確是(
A.關(guān)于x軸對稱
B.關(guān)于y軸對稱
C.關(guān)于原點對稱
D.都在y=2x的圖象上

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(12分)如圖,以ABCBC邊上一點O為圓心的圓,經(jīng)過AB兩點,且與BC邊交于點EDBE的下半圓弧的中點,連接ADBCF,AC=FC

(1)求證:AC是⊙O的切線;

(2)已知圓的半徑R=5,EF=3,求DF的長.

查看答案和解析>>

同步練習(xí)冊答案