在平面直角坐標(biāo)系中,直線y=kx+m(-≤k≤)經(jīng)過點(diǎn)A(,4),且與y軸相交于點(diǎn)C.點(diǎn)B在y軸上,O為坐標(biāo)原點(diǎn),且OB=OA+7-2.記△ABC的面積為S.
(1)求m的取值范圍;
(2)求S關(guān)于m的函數(shù)關(guān)系式;
(3)設(shè)點(diǎn)B在y軸的正半軸上,當(dāng)S取得最大值時(shí),將△ABC沿AC折疊得到△AB′C,求點(diǎn)B′的坐標(biāo).
【答案】分析:(1)根據(jù)點(diǎn)在直線上的意義可知k+m=4,k=1-m.因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131101185649901863288/SYS201311011856499018632023_DA/2.png">,即.解得2≤m≤6.
(2)根據(jù)題意易得:OA=,OB=7.所以B點(diǎn)的坐標(biāo)為(0,7)或(0,-7).
直線y=kx+m與y軸的交點(diǎn)為C(0,m).
當(dāng)點(diǎn)B的坐標(biāo)是(0,7)時(shí),由于C(0,m),2≤m≤6,故BC=7-m.所以S=•2•BC=(7-m);
當(dāng)點(diǎn)B的坐標(biāo)是(0,-7)時(shí),由于C(0,m),2≤m≤6,故BC=7+m.所以S=•2•BC=(7+m).
(3)分別過點(diǎn)A、B′作y軸的垂線AD、B′E,垂足為D、E.
利用Rt△ACD中的關(guān)系:tan∠ACD=,得∠ACD=60°,∠ACB′=∠ACD=60°,CB′=BC=7-2=5,所以∠B′CE=180°-∠B′CB=60°.
再利用Rt△B'CE中的線段之間的關(guān)系可求得,CE=,B′E=.故OE=CE-OC=.所以點(diǎn)B′的坐標(biāo)為().
解答:解:(1)∵直線y=kx+m(-≤k≤)經(jīng)過點(diǎn)A(,4),
k+m=4,
∴k=1-m.
,∴
解得2≤m≤6.

(2)∵A的坐標(biāo)是(,4),∴OA=
又∵OB=OA+7-2,∴OB=7.∴B點(diǎn)的坐標(biāo)為(0,7)或(0,-7).
直線y=kx+m與y軸的交點(diǎn)為C(0,m).
①當(dāng)點(diǎn)B的坐標(biāo)是(0,7)時(shí),由于C(0,m),2≤m≤6,故BC=7-m.
∴S=•2•BC=(7-m).
②當(dāng)點(diǎn)B的坐標(biāo)是(0,-7)時(shí),由于C(0,m),2≤m≤6,故BC=7+m.
∴S=•2•BC=(7+m).

(3)當(dāng)m=2時(shí),一次函數(shù)S=-+7取得最大值,這時(shí)C(0,2).
如圖,分別過點(diǎn)A、B′作y軸的垂線AD、B′E,垂足為D、E.
則AD=,CD=4-2=2.
在Rt△ACD中,tan∠ACD=,
∴∠ACD=60°.
由題意,得∠ACB′=∠ACD=60°,CB′=BC=7-2=5,
∴∠B′CE=180°-∠B′CB=60°.
在Rt△B′CE中,∠B′CE=60°,CB′=5,
∴CE=,B′E=
故OE=CE-OC=
∴點(diǎn)B′的坐標(biāo)為().
點(diǎn)評:主要考查了函數(shù)和幾何圖形的綜合運(yùn)用.解題的關(guān)鍵是會靈活的運(yùn)用函數(shù)圖象的性質(zhì)和交點(diǎn)的意義求出相應(yīng)的線段的長度或表示線段的長度,再結(jié)合具體圖形的性質(zhì)求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

28、在平面直角坐標(biāo)系中,點(diǎn)P到x軸的距離為8,到y(tǒng)軸的距離為6,且點(diǎn)P在第二象限,則點(diǎn)P坐標(biāo)為
(-6,8)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

10、在平面直角坐標(biāo)系中,點(diǎn)P1(a,-3)與點(diǎn)P2(4,b)關(guān)于y軸對稱,則a+b=
-7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,有A(2,3)、B(3,2)兩點(diǎn).
(1)請?jiān)偬砑右稽c(diǎn)C,求出圖象經(jīng)過A、B、C三點(diǎn)的函數(shù)關(guān)系式.
(2)反思第(1)小問,考慮有沒有更簡捷的解題策略?請說出你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系中,開口向下的拋物線與x軸交于A、B兩點(diǎn),D是拋物線的頂點(diǎn),O為精英家教網(wǎng)坐標(biāo)原點(diǎn).A、B兩點(diǎn)的橫坐標(biāo)分別是方程x2-4x-12=0的兩根,且cos∠DAB=
2
2

(1)求拋物線的函數(shù)解析式;
(2)作AC⊥AD,AC交拋物線于點(diǎn)C,求點(diǎn)C的坐標(biāo)及直線AC的函數(shù)解析式;
(3)在(2)的條件下,在x軸上方的拋物線上是否存在一點(diǎn)P,使△APC的面積最大?如果存在,請求出點(diǎn)P的坐標(biāo)和△APC的最大面積;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

18、在平面直角坐標(biāo)系中,把一個(gè)圖形先繞著原點(diǎn)順時(shí)針旋轉(zhuǎn)的角度為θ,再以原點(diǎn)為位似中心,相似比為k得到一個(gè)新的圖形,我們把這個(gè)過程記為【θ,k】變換.例如,把圖中的△ABC先繞著原點(diǎn)O順時(shí)針旋轉(zhuǎn)的角度為90°,再以原點(diǎn)為位似中心,相似比為2得到一個(gè)新的圖形△A1B1C1,可以把這個(gè)過程記為【90°,2】變換.
(1)在圖中畫出所有符合要求的△A1B1C1;
(2)若△OMN的頂點(diǎn)坐標(biāo)分別為O(0,0)、M(2,4)、N(6,2),把△OMN經(jīng)過【θ,k】變換后得到△O′M′N′,若點(diǎn)M的對應(yīng)點(diǎn)M′的坐標(biāo)為(-1,-2),則θ=
0°(或360°的整數(shù)倍)
,k=
2

查看答案和解析>>

同步練習(xí)冊答案