【題目】等腰RtABC,點(diǎn)D為斜邊AB上的中點(diǎn),點(diǎn)E在線段BD上,連結(jié)CDCE,作AHCE,垂足為H,交CD于點(diǎn)GAH的延長線交BC于點(diǎn)F.

1)求證:ADG≌△CDE.

2)若點(diǎn)H恰好為CE的中點(diǎn),求證:∠CGF=CFG.

【答案】(1)證明見解析;(2)證明見解析.

【解析】

1)根據(jù)已知條件可得出AD=CD=BD,∠CGH+GCH=AGD+GAD=90°,繼而得出∠GAD=GCH,從而結(jié)論得以證明.

2)由已知條件可得,∠CAH=EAH,繼而得出∠AGD==CGH=CFG

解:(1)在等腰RtABC中,

點(diǎn)D為斜邊AB上的中點(diǎn)

CD=AB,CDAB

AD=AB

AD=CD

CDAB

ADG=CDE=90°

AHCE

∴∠CGH+GCH=90°

∵∠AGD+GAD=90°

又∵∠AGD=CGH

∴∠GAD=GCH

△△ADGCDE

∵∠ADG=CDE=90°,AD=CD,GAD=GCH

ADG≌△CDE…

2)∵AHCE,點(diǎn)HCE的中點(diǎn)

AC=AE

∴∠CAH=EAH

∵∠CAH+AFC=90°

EAH+AGD=90°

∴∠AFC=AGD

∵∠AGD=CGH

∴∠AFC=CGH

即∠CGF=CFG

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在已知中,分別是的中點(diǎn),求證.

利用第題的結(jié)論,解決下列問題:

如圖,在四邊形中,,點(diǎn)分別在上,點(diǎn)分別為的中點(diǎn),連接,求長度的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖, 都是等邊三角形,連接、 相交于點(diǎn).

1)求證;

2 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有若干個(gè)邊長為2的正方形,若正方形的一個(gè)頂點(diǎn)是正方形的中心O1,如圖所示,類似的正方形的一個(gè)頂點(diǎn)是正方形的中心O2,并且正方形與正方形不重疊,如果若干個(gè)正方形都按這種方法拼接,需要m個(gè)正方形能使拼接處的圖形的陰影部分的面積等于一個(gè)正方形的面積.現(xiàn)有一拋物線y=mx2+nx+3,其頂點(diǎn)在x軸上,則該拋物線的對(duì)稱軸為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中ADBC,垂足為D,y軸于點(diǎn)H,直線BC的解析式為y=-2x+4.點(diǎn)H(0,2),

1)求證:△AOH≌△COB;

2)求D點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,OC是∠AOB的平分線,點(diǎn)POC上且OP=4,∠AOB=60°,過點(diǎn)P的動(dòng)直線DEOAD,交OBE,那么=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,ACB=90°,B=30°,CD,CE分別是AB邊上的中線和高.

(1)求證:AE=ED;

(2)若AC=2,求CDE的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為營造濃厚的創(chuàng)建全國文明城市氛圍,東營市某中學(xué)委托制衣廠制作“最美東營人”和“最美志愿者”兩款文化衫.若制作“最美東營人”文化衫2件,“最美志愿者”文化衫3件,共需90元;制作“最美東營人”文化衫3件,“最美志愿者”5件,共需145元.

(1)求“最美東營人”和“最美志愿者”兩款文化衫每件各多少元?

(2)若該中學(xué)要購進(jìn)“最美東營人”和“最美志愿者”兩款文化衫共90件,總費(fèi)用少于1595元,并且“最美東營人”文化衫的數(shù)量少于“最美志愿者”文化衫的數(shù)量,那么該中學(xué)有哪幾種購買方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O是正ABC內(nèi)一點(diǎn),OA6,OB8,OC10,將線段BO以點(diǎn)B為旋轉(zhuǎn)中心逆時(shí)針旋轉(zhuǎn)60°得到線段BO',下列結(jié)論:①△BO'A可以由BOC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到;②點(diǎn)OO的距離為6;③∠AOB150°;④SBOC12+6 S四邊形AOBO24+12.其中正確的結(jié)論是_____.(填序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案