【題目】如圖,拋物線軸于點、(點在點的左側),與軸交于點.將拋物線繞點旋轉,得到新的拋物線,它的頂點為,與軸的另一個交點為.若四邊形為矩形,則,應滿足的關系式為(

A. B. C. D.

【答案】B

【解析】

先利用拋物線與x軸的交點問題求出A-0),B0),則確定C0b),則OA=OB=,再利用中心對稱的性質得到∴A1B=AB=2,然后根據(jù)射影定理得到OC2=OAOA1,即b2=3,接著變形等式即可得到ab=-3

解:當y=0時,ax2+b=0,解得x=±,則A-,0),B,0),

x=0時,y=ax2+b=b,則C0,b),
OA=OB=,

∵拋物線l1繞點B順時針旋轉180°,得到新的拋物線l2,它的頂點為C1,與x軸的另一個交點為A1
A1B=AB=2,∵四邊形AC1A1C為矩形,
∴∠ACA1=90°,
OC2=OAOA1,即b2=3

ab=-3

故選:B

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在矩形ABCD中,點ECD上,∠AEB90°,點P從點A出發(fā),沿AEB的路徑勻速運動到點B停止,作PQCD于點Q,設點P運動的路程為x,PQ長為y,若yx之間的函數(shù)關系圖象如圖2所示,當x6時,PQ的值是(  )

A. 2B. C. D. 1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某氣球內(nèi)充滿了一定質量的氣體,當溫度不變時,氣球內(nèi)氣體的氣壓p(單位:千帕)隨氣體體積V(單位:立方米)的變化而變化,pV的變化情況如表所示.

P

1.5

2

2.5

3

4

V

64

48

38.4

32

24

(1)寫出一個符合表格數(shù)據(jù)的p關于V的函數(shù)解析式   

(2)當氣球內(nèi)的氣壓大于144千帕時,氣球將爆炸,依照(1)中的函數(shù)解析式,基于安全考慮,氣球的體積至少為多少立方米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小強想知道湖中兩個小亭A、B之間的距離,他在與小亭A、B位于同一水平面且東西走向的湖邊小道I上某一觀測點M處,測得亭A在點M的北偏東30°,亭B在點M的北偏東60°,當小明由點M沿小道I向東走60米時,到達點N處,此時測得亭A恰好位于點N的正北方向,繼續(xù)向東走30米時到達點Q處,此時亭B恰好位于點Q的正北方向,根據(jù)以上測量數(shù)據(jù),請你幫助小強計算湖中兩個小亭A、B之間的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的一元二次方程有實數(shù)根.

(1)求m的值;

(2)先作的圖象關于x軸的對稱圖形,然后將所作圖形向左平移3個單位長度,再向上平移2個單位長度,寫出變化后圖象的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線y=﹣x2+2kxk2+k+3(k為常數(shù))的頂點縱坐標為4.

(1)求k的值;

(2)設拋物線與直線y=﹣x﹣3)(m≠0)兩交點的橫坐標為x1,x2,nx1+x2﹣2,若A(1,a),Bb,)兩點在動點Mm,n)所形成的曲線上,求直線AB的解析式;

(3)將(2)中的直線AB繞點(3,0)順時針旋轉45°,與拋物線x軸上方的部分相交于點C,請直接寫出點C的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知四邊形ABCD內(nèi)接于⊙O,A的中點,AEACA,與⊙OCB的延長線交于點F,E,且.

(1)求證:△ADC∽△EBA;

(2)如果AB8,CD5,求tan∠CAD的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,AB=AC,以AC為直徑作BC于點D,過點DFEAB于點E,交AC的延長線于點F.

(1)求證: EF相切;

(2)AE=6,,求EB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】郴州市正在創(chuàng)建全國文明城市,某校擬舉辦創(chuàng)文知識搶答賽,欲購買A、B兩種獎品以鼓勵搶答者.如果購買A20件,B15件,共需380元;如果購買A15件,B10件,共需280元.

(1)A、B兩種獎品每件各多少元?

(2)現(xiàn)要購買A、B兩種獎品共100件,總費用不超過900元,那么A種獎品最多購買多少件?

查看答案和解析>>

同步練習冊答案