5、如圖,兩建筑物的水平距離為30m,從A點測得D點的俯角為75°,測得C點的俯角為35°,則較低建筑物CD的高為( 。
分析:過點A作AE⊥CD的延長線與點E,構建兩個直角三角形,利用三角函數(shù)分別求出AB和CD后,求差即可.
解答:解:作AE⊥CD的延長線與點E.
在Rt三角形AED中,AB=BDtan75°=30×tan75°;
在Rt△ACE中,CE=30×tan35°.
故CD=AB-EC=30(tan75°-tan35°).
故選D.
點評:本題考查俯角的定義,要求學生能借助俯角構造直角三角形并解直角三角形.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,兩建筑物的水平距離BC為24米,從點A測得點D的俯角α=30°,測得點C的俯角β=60°,求AB和CD兩座建筑物的高.(結果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,兩建筑物的水平距離BC為27米,從點A測得點D的俯角α=30°,測得點C的俯角β=60°,求AB和CD兩建筑物的高.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,兩建筑物的水平距離BC為36m,從A點測得D點的俯角α為30°,測得C點的俯角β為45°,求這兩個建筑物的高度?(結果精確到0.1m,參考數(shù)據(jù):
3
≈1.73

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1997•廣西)如圖,兩建筑物的水平距離為30米,從A點測得D點的俯角α為45°,測得C點的俯角β為60°,求這兩個建筑物AB、CD的高(結果保留根號).

查看答案和解析>>

同步練習冊答案