【題目】問題一:如圖1,已知A,C兩點(diǎn)之間的距離為16 cm,甲,乙兩點(diǎn)分別從相距3cmA,B兩點(diǎn)同時(shí)出發(fā)到C點(diǎn),若甲的速度為8 cm/s,乙的速度為6 cm/s,設(shè)乙運(yùn)動(dòng)時(shí)間為x(s), 甲乙兩點(diǎn)之間距離為y(cm).

(1)當(dāng)甲追上乙時(shí),x =

(2)請(qǐng)用含x的代數(shù)式表示y

當(dāng)甲追上乙前,y= ;

當(dāng)甲追上乙后,甲到達(dá)C之前,y= ;

當(dāng)甲到達(dá)C之后,乙到達(dá)C之前,y=

問題二:如圖2,若將上述線段AC彎曲后視作鐘表外圍的一部分,線段AB正好對(duì)應(yīng)鐘表上的弧AB(1小時(shí)的間隔),易知AOB=30°

(1)分針OD指向圓周上的點(diǎn)的速度為每分鐘轉(zhuǎn)動(dòng) cm;時(shí)針OE指向圓周上的點(diǎn)的速度為每分鐘轉(zhuǎn)動(dòng) cm.

(2)若從4:00起計(jì)時(shí),求幾分鐘后分針與時(shí)針第一次重合.

【答案】問題一、(1);(2)3-2x;2x-3;13-6x;問題一、(1);.

【解析】

問題一根據(jù)等量關(guān)系,路程=速度時(shí)間,路程差=路程1-路程2,即可列出方程求解。

問題一(1)當(dāng)甲追上乙時(shí),甲的路程=乙的路程+3

所以,

故答案為.

(2) 當(dāng)甲追上乙前,路程差=乙所行的路程+3-甲所行的路程;

所以,.

當(dāng)甲追上乙后,甲到達(dá)C之前,路程差=甲所行的路程-3-乙所行的路程;

所以,.

當(dāng)甲到達(dá)C之后,乙到達(dá)C之前,路程差=總路程-3-乙所行的路程;

所以,.

問題二:(1)由題意AB為鐘表外圍的一部分,且∠AOB=30°

可知,鐘表外圍的長度為

分針OD的速度為

時(shí)針OE的速度為

OD每分鐘轉(zhuǎn)動(dòng),OE每分鐘轉(zhuǎn)動(dòng).

(2)4點(diǎn)時(shí)時(shí)針與分針的路程差為

設(shè)分鐘后分針與時(shí)針第一次重合。

由題意得,

解得.

分鐘后分針與時(shí)針第一次重合。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用直尺和圓規(guī)作一個(gè)角等于已知角,如圖,能得出的依據(jù)是( )

A.邊邊邊 B.邊角邊 C.角邊角 D.角角邊

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC是等邊三角形,AB=4,EAC的中點(diǎn),D是直線BC上一動(dòng)點(diǎn),線段ED繞點(diǎn)E逆時(shí)針旋轉(zhuǎn)90°,得到線段EF,當(dāng)點(diǎn)D運(yùn)動(dòng)時(shí),則AF的最小值為(

A.2B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠B=90°,BC=8cm,AC=10cm,動(dòng)點(diǎn)A從點(diǎn)A出發(fā)以1cm/s的速度沿AB邊運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)B出發(fā)以2cm/s的速度沿BC邊運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒.

(1)若△PBQ的面積等于8cm2,求t的值;

(2)若PQ的長等于cm,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,下列條件之一能使平行四邊形是菱形的為(

;②;③;④

A. ①③ B. ②③ C. ③④ D. ①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中, ,將繞頂點(diǎn)逆時(shí)針旋轉(zhuǎn)得到RtDEC,點(diǎn)M是BC的中點(diǎn),點(diǎn)PDE的中點(diǎn),連接PM,若BC =2,∠BAC=30°,則線段PM的最大值是 ( )

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,ADBC,B=90°,AB=8cm,AD=16cm,BC=22cm,點(diǎn)P從點(diǎn)A出發(fā),以1cm/s的速度向點(diǎn)D運(yùn)動(dòng),點(diǎn)Q從點(diǎn)C同時(shí)出發(fā),以3cm/s的速度向點(diǎn)B運(yùn)動(dòng),其中一個(gè)動(dòng)點(diǎn)到達(dá)端點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.

(1)當(dāng)t為多少時(shí),四邊形ABQP成為矩形?

(2)四邊形PBQD是否能成為菱形?若能,求出t的值;若不能,請(qǐng)說明理由,并探究如何改變Q點(diǎn)的速度(勻速運(yùn)動(dòng)),使四邊形PBQD在某一時(shí)刻為菱形,求點(diǎn)Q的速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了了解本校七年級(jí)學(xué)生課外閱讀的愛好,隨機(jī)抽取該校七年級(jí)部分學(xué)生進(jìn)行問卷調(diào)查(每人只選一種書籍)如圖是整理數(shù)據(jù)后繪制的兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖中提供的信息,解答下列問題:

1)這次活動(dòng)一共調(diào)查了多少名學(xué)生?

2)求扇形統(tǒng)計(jì)圖中“其它”中的扇形圓心角的度數(shù).

3)補(bǔ)全條形統(tǒng)計(jì)圖.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以AD為直徑的半圓經(jīng)過點(diǎn)E、B,點(diǎn)E、B是半圓的三等分點(diǎn),弧 BE的長為,則圖中陰影部分的面積為(

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案