精英家教網 > 初中數學 > 題目詳情

【題目】已知,ADABC的中線,將BC邊所在直線繞點D順時針旋轉角,交邊AB于點M,交射線AC于點N,設AM=xABAN=yAC(x,y≠0).

1)如圖1,當為等邊三角形且°時,證明:AMN∽△DMA;

2)如圖2,證明: ;

3)如圖3,當GAD上任意一點時(點G不與A重合),過點G的直線交邊AB于點 ,交射線AC于點,設AG=nAD ,猜想: 是否成立?并說明理由.

【答案】(1)證明見解析;(2)證明見解析;(3)猜想成立,理由見解析.

【解析】試題分析:(1)利用兩角法證得兩個三角形相似;

2)如圖1過點CCFABMN于點F,構建相似三角形CFN∽△AMN,利用該相似三角形的對應邊成比例求得.通過證△CFD≌△BMD得到BM=CF,利用比例的性質和相關線段的代入得到,;

3)猜想 += 成立.需要分類討論①如圖乙,DMNM'N'ABMAC的延長線于N.由平行線截線段成比例得到,易求,利用(2)的結果可以求得;

②如圖丙當過點DM1N1M'N'AB的延長線于M1,AC1N1,則同理可得

試題解析:(1)證明如圖1.在AMD中,∵AD是△ABC的中線ABC為等邊三角形,ADBC,MAD=30°.又∵α=BDM=30°,∴∠MDA=60°,∴∠AMD=90°.在AMN,AMN=90°,MAN=60°,∴∠AMN=DMA=90°,MAN=MDA,∴△AMN∽△DMA

2)證明如圖甲,過點CCFABMN于點F,則△CFN∽△AMN

CFBM,∴∠B=DCF.在CFD和△BMD, ,∴△CFD≌△BMD,BM=CF,,;

3)猜想 += 成立.理由如下

①如圖乙,DMNM'N'ABMAC的延長線于N,,由(2)知;

②如圖丙,當過點DM1N1M'N'AB的延長線于M1AC1N1,則同理可得

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,等邊△BCP在正方形ABCD內,則∠APD_____度.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在我國沿海有一艘不明國籍的輪船進入我國海域,我海軍甲、乙兩艘巡邏艇立即從相距13nmileA,B兩個基地前去攔截,六分鐘后同時到達C地將其攔截.已知甲巡邏艇每小時航行120nmile,乙巡邏艇每小時航行50nmile,航向為北偏西40°,求甲巡邏艇的航向.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某校計劃購買一批籃球和足球,已知購買2個籃球和1個足球共需320元,購買3個籃球和2個足球共需540元.

(1)求每個籃球和每個足球的售價;

(2)如果學校計劃購買這兩種球共50個,總費用不超過5500元,那么最多可購買多少個足球?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,一只甲蟲在5×5的方格(每小格邊長為1)上沿著網格線運動.它從A處出發(fā)去看望B、C、D處的其它甲蟲,規(guī)定:向上向右走為正,向下向左走為負.如果從AB記為:A→B(+1,+4),從BA記為:B→A(-1,-4),其中第一個數表示左右方向,第二個數表示上下方向.

(1)圖中A→C( , ),B→C( , ),C→ (+1, );

(2)若這只甲蟲從A處去甲蟲P處的行走路線依次為(+2,+2),(+2,-1),(-2,+3),(-1,-2),請在圖中標出P的位置;

(3)若這只甲蟲的行走路線為A→B→C→D,請計算該甲蟲走過的路程;

(4)若圖中另有兩個格點M、N,且M→A(3-a,b-4),M→N(5-a,b-2),則N→A應記為什么?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】6張小長方形紙片(如圖1所示)按圖2所示的方式不重疊的放在長方形ABCD內,未被覆蓋的部分恰好分割為兩個長方形,面積分別為S1S2.已知小長方形紙片的長為a,寬為b,且a>b.當AB長度不變而BC變長時,將6張小長方形紙片還按照同樣的方式放在新的長方形ABCD內,S1S2的差總保持不變,則ab滿足的關系是

A. B.

C. D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在方格紙中,每個小正方形的邊長均為1個單位長度有一個△ABC,它的三個頂點均與小正方形的頂點重合.

1)將△ABC向右平移3個單位長度,得到△DEFAD、BE、CF對應),請在方格紙中畫出△DEF;

2)在(1)的條件下,連接AECE,請直接寫出△ACE的面積S,并判斷B是否在邊AE上.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知數軸上有A、BC三點,點A和點B間距20個單位長度且點AB表示的有理數互為相反數,AC36,數軸上有一動點P從點A出發(fā),以每秒1個單位長度的速度沿數軸向終點C移動,設移動時間為t秒.

1)點A表示的有理數是   ,點B表示的有理數是   ,點C表示的有理數是   

2)當點P運動到點B時,點Q從點O出發(fā),以每秒6個單位長度的速度沿數軸在點O和點C之間往復運動.

①求t為何值時,點Q第一次與點P重合?

②當點P運動到點C時,點Q的運動停止,求此時點Q一共運動了多少個單位長度,并求出此時點Q在數軸上所表示的有理數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知AB=AC,DE垂直平分ABAC、ABE、D兩點,若AB=12cm,BC=10cm,A=50°,求BCE的周長和∠EBC的度數.

查看答案和解析>>

同步練習冊答案