(2009•東城區(qū)一模)如圖,已知D是△ABC的邊AB上一點(diǎn),F(xiàn)C∥AB,DF交AC于點(diǎn)E,DE=EF.求證:E是AC的中點(diǎn).

【答案】分析:要證明E是AC中點(diǎn),即AE=EC只要證明三角形ADE和CEF全等即可.這兩個(gè)三角形中,已知的條件有:DE=EF,一組對(duì)頂角,我們只要再得出一組對(duì)應(yīng)角相等即可得出兩三角形全等的結(jié)論.由于FC∥AB,那么∠ADF=∠F,由此就構(gòu)成了全等三角形判定中的ASA,因此兩三角形就全等了.
解答:證明:∵FC∥AB,
∴∠ADF=∠F.
∵∠AED=∠CEF,DE=EF,
∴△ADE≌△CEF.
∴AE=CE.
即E是AC的中點(diǎn).
點(diǎn)評(píng):本題主要考查了全等三角形的判定和性質(zhì);利用全等三角形來得出簡(jiǎn)單的線段相等是解此類題的常用方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2009年北京市東城區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

(2009•東城區(qū)一模)請(qǐng)閱讀下列材料:
圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長(zhǎng)的積相等.即如圖1,若弦AB、CD交于點(diǎn)P,則PA•PB=PC•PD.請(qǐng)你根據(jù)以上材料,解決下列問題.

已知⊙O的半徑為2,P是⊙O內(nèi)一點(diǎn),且OP=1,過點(diǎn)P任作-弦AC,過A、C兩點(diǎn)分別作⊙O的切線m和n,作PQ⊥m于點(diǎn)Q,PR⊥n于點(diǎn)R.(如圖2)
(1)若AC恰經(jīng)過圓心O,請(qǐng)你在圖3中畫出符合題意的圖形,并計(jì)算:的值;
(2)若OP⊥AC,請(qǐng)你在圖4中畫出符合題意的圖形,并計(jì)算:的值;
(3)若AC是過點(diǎn)P的任一弦(圖2),請(qǐng)你結(jié)合(1)(2)的結(jié)論,猜想:的值,并給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年北京市東城區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

(2009•東城區(qū)一模)某商場(chǎng)用36萬(wàn)元購(gòu)進(jìn)A,B兩種商品,銷售完后共獲利6萬(wàn)元,其進(jìn)價(jià)和售價(jià)如下表:
         A       B
進(jìn)價(jià)(元/件)      1200     1000
售價(jià)(元/件)      1380     1200
求該商場(chǎng)購(gòu)進(jìn)A,B兩種商品各多少件.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年北京市東城區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

(2009•東城區(qū)一模)如圖,梯形ABCD中,AD∥BC,∠B=45°,∠D=120°,CD=cm,求AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年北京市東城區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

(2009•東城區(qū)一模)解不等式組

查看答案和解析>>

同步練習(xí)冊(cè)答案