精英家教網 > 初中數學 > 題目詳情

【題目】如圖1,在等腰Rt△ABC中,∠ACB=90°,點FAB上一點,作等腰Rt△FCP,且∠PCF=90°,連結AP

1)求證:△CFB≌△CPA;

2)求證:AP2+AF2=PF2;

3)如圖2,在AF上取點E,使∠ECF=45°,求證:AE2+BF2=EF2

【答案】(1)證明見解析;(2)證明見解析;(3)證明見解析.

【解析】

(1)由△ABC和△PCF都是等腰直角三角形,易得AC=BC,PC=FC,∠ACP=∠BCF可得結論;

(2) 由(1)可得∠PAC=∠B=45°,可得∠PAF=∠PAC+∠BAC=45°+45°=90°,AP2+AF2=PF2;

(3)連結PE,可證得△PCE≌△FCE(SAS),可得EF=EP,∠PCE=∠ECF=45°,由(2)知可得∠PAF=90°,PA=BF,AP2+AE2=PE2,AE2+BF2=EF2.

解:

(1)證明:∵△ABC和△PCF都是等腰直角三角形,

∴AC=BC,PC=FC,∠ACB=PCF=90°,

∴∠ACB-∠ACF=∠PCF-∠ACF,

∴∠ACP=∠BCF,

在△CFB與△CPA中

∴△CFB≌△CPA(SAS)

(2)證明:∵△ABC是等腰直角三角形,

∴∠B=∠BAC=45°,

由(1)△CFB≌△CPA,∴∠PAC=∠B=45°,

∴∠PAF=∠PAC+∠BAC=45°+45°=90°,

∴AP2+AF2=PF2

(3)證明:連結PE,

∵∠ACE+∠BCF=∠ACB-∠ECF=90°-45°=45°,

∵∠BCF=∠ACP,

∴∠PCE=∠PCA+∠ACE=45°,

在△PCE與△FCE中

∴△PCE≌△FCE(SAS),

∴EF=EP,∠PCE=∠ECF=45°

由(2)知∴∠PAF=90°,PA=BF,

∴AP2+AE2=PE2;

∴AE2+BF2=EF2

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖①,在△ABC中,∠ABC與∠ACB的平分線相交于點P

(1)如果∠A=80°,求∠BPC的度數;

(2)如圖②,作△ABC外角∠MBC,∠NCB的角平分線交于點Q,試探索∠Q、∠A之間的數量關系.

(3)如圖③,延長線段BP、QC交于點E,△BQE中,存在一個內角等于另一個內角的2倍,求∠A的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知四邊形ABCD是平行四邊形(如圖),把ABD沿對角線BD翻折180°得到AˊBD.

1利用尺規(guī)作出AˊBD.(要求保留作圖痕跡,不寫作法);

2D AˊBC交于點E,求證:BAˊE≌△DCE.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AB是半圓O的直徑,射線AM⊥AB,點P在AM上,連接OP交半圓O于點D,PC切半圓O于點C,連接BC,OC.
(1)求證:△OAP≌△OCP;
(2)若半圓O的半徑等于2,填空: ①當AP=時,四邊形OAPC是正方形;
②當AP=時,四邊形BODC是菱形.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在5×5的正方形網格中,每個小正方形的邊長都是1,在所給網格中按下列要求畫出圖形:

1)(I)已知點A在格點(即小正方形的頂點)上,畫一條線段AB,長度為,且點B在格點上; II)以上題中所畫線段AB為一邊,另外兩條邊長分別是3,2,畫一個三角形ABC,使點C在格點上(只需畫出符合條件的一個三角形);

2)所畫的三角形ABCAB邊上高線長.(直接寫出答案)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABC中,C=90°,B=30°,以A為圓心,任意長為半徑畫弧分別交ABAC于點MN,再分別以MN為圓心,大于MN的長為半徑畫弧,兩弧交于點P,連結AP并延長交BC于點D,則下列說法中正確的個數是

ADBAC的平分線;②∠ADC=60°;DAB的中垂線上;SDACSABC=13

A1 B2 C3 D4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在中, ,垂足為,點上, ,垂足為.

1平行嗎?為什么?

(2)如果,且,求的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知二次函數y=ax2+bx+c的圖象如圖所示,則下列結論中:①ac>0;②a+b+c<0;③4a﹣2b+c<0;④2a+b<0;⑤4ac﹣b2<4a;⑥a+b>0中,其中正確的個數為(
A.2
B.3
C.4
D.5

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】尺規(guī)作圖是理論上接近完美的作圖方式,樂樂很喜歡用尺規(guī)畫出要求的圖形.在下面的中,請你也按要求用尺規(guī)作出下列圖形(不寫作法,但要保留作圖痕跡)并填空.

1)作出的平分線交邊于點;

2)作出邊上的垂直平分線于點 ;

3)連接,若,則的度數為

查看答案和解析>>

同步練習冊答案