【題目】計算

(1)12(-18)(-7)15

(2)(-2.7)(1)-(-6.7)(-1.6)

(3)20+(-14)-(-18)-13

(4)81÷|-2|×

(5)

(6)14(10.5×)×2-23

【答案】18;(24;(311;(4-1;(525;(64;

【解析】

1)(2)根據(jù)有理數(shù)的加減法可以解答本題

3)(4)(6)根據(jù)有理數(shù)的混合運算的運算方法,求出每個算式的值各是多少即可.

5)應用乘法分配律,求出算式的值是多少即可.

112--18+-7-15=12+18+-7+-15=8;

2)(-2.7++1--6.7+-1.6=-2.7+1.6+6.7+-1.6=[-2.7+6.7]+[1.6+-1.6]=4;

320+(14)(18)13=6+1813=2413=11;

481÷|2÷(16)=36×÷(16)=16÷(16)=1

5(+)×(36)= ×(36)+ ×(36) ×(36)=2830+33=25;

614(10.5×)×(223)=1×(6)=1+5=4;

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】(8分)如圖,⊙O是△ABC的外接圓,AB為直徑,ODBC交⊙O于點D,交AC于點E,連接AD,BD,CD.

(1)求證:EAC中點;

(2)求證:AD=CD;

3)若AB=10,cosABC=,求tanDBC的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(閱讀理解)

AB、C為數(shù)軸上三點,如果點CA、B之間且到A的距離是點CB的距離3倍,那么我們就稱點C{AB}的奇點.

例如,如圖1,點A表示的數(shù)為﹣3,點B示的數(shù)為1.表示0的點C到點A的距離是3,到點B的距離是1,那么點C{A,B}的奇點;又如,表示﹣2的點D到點A的距離是1,到點B的距離是3,那么點D就不是{A,B}的奇點,但點D{B,A}的奇點.

(知識運用)

如圖2M、N為數(shù)軸上兩點,點M所表示的數(shù)為﹣3,點N所表示的數(shù)為5

1)數(shù)     所表示的點是{M,N}的奇點;數(shù)     所表示的點是{NM}的奇點;

2)如圖3,A、B為數(shù)軸上兩點,點A所表示的數(shù)為﹣50,點B所表示的數(shù)為30.現(xiàn)有一動點P從點B出發(fā)向左運動,當P點運動到數(shù)軸上的什么位置時,P、AB中恰有一個點為其余兩點的奇點?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖的七邊形ABCDEFG中,AB、ED的延長線相交于O點.若圖中∠1、2、3、4的外角的角度和為220°,則∠BOD的度數(shù)是( 。

A. 400 B. 450 C. 500 D. 600

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1ABC為等邊三角形,點E、F分別在BCAB上,且CE=BF,AECF相交于點H.

1)求證:ACE≌△CBF;

2)求∠CHE的度數(shù);

3)如圖2,在圖1上以AC為邊長再作等邊ACD,將HE延長至G使得HG=CH,連接HDCG,求證:HD=AH+CH

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某公司有三個住宅區(qū),AB,C各區(qū)分別住有職工10人,15人,45人,且這三個區(qū)在一條大道上(A,B,C三點共線),已知AB150m,BC90m.為了方便職工上下班,該公司的接送車打算在此間只設一個?奎c,為使所有的人步行到?奎c的路程之和最小,那么該?奎c的位置應設在(  )

A. AB. BC. A,B之間D. C

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】四川蒼溪小王家今年紅心獼猴桃喜獲豐收,采摘上市20天全部銷售完,小王對銷售情況進行跟蹤記錄,并將記錄情況繪制成圖象,日銷售量y(單位:千克)與上市時間x(單位:天)的函數(shù)關系如圖(1)所示,紅星獼猴桃的價格z(單位:元/千克)與上市時間x(天)的函數(shù)關系式如圖(2)所示.

1)觀察圖象,直接寫出日銷售量的最大值;

2)求小王家紅心獼猴桃的日銷量y與上市時間x的函數(shù)解析式;并寫出自變量的取值范圍.

3)試比較第6天和第13天的銷售金額哪天多?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們知道,在數(shù)軸上,|a|表示數(shù)a到原點的距離,這是絕對值的幾何意義.進一步地,數(shù)軸上兩個點A、B,分別用a,b表示,那么A、B兩點之間的距離為:AB=|ab|.利用此結論,回答以下問題:

1)數(shù)軸上表示25的兩點的距離是 ,數(shù)軸上表示-20和-5的兩點之間的距離是 ,數(shù)軸上表示15和-30的兩點之間的距離是 .

2)數(shù)軸上表示x和-1的兩點A,B之間的距離是 ,如果|AB|=2,那么x

3)式子|x+1|+|x2|+|x3|的最小值是 .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠B=30°∠C=45°,AD平分∠BACBC于點DDE⊥AB,垂足為E。若DE=1,則BC的長為(

A.2+B.C.D.3

查看答案和解析>>

同步練習冊答案