【題目】為了創(chuàng)設全新的校園文化氛圍,進一步組織學生開展課外閱讀,讓學生在豐富多彩的書海中,擴大知識源,親近母語,提高文學素養(yǎng).某校準備開展“與經典為友、與名著為伴”的閱讀活動,活動前對本校學生進行了“你最喜歡的圖書類型(只寫一項)”的隨機抽樣調查,相關數據統(tǒng)計如下:
請根據以上信息解答下列問題:
(1)該校對多少名學生進行了抽樣調查?
(2)請將圖1和圖2補充完整:并求出扇形統(tǒng)計圖中小說所對應的圓心角度數.
(3)已知該校共有學生1600人,利用樣本數據估計全校學生中最喜歡小說人數約為多少人?
【答案】(1)200;(2)圖1和圖2見解析,;(3)720
【解析】
(1)用喜歡小說的人數除以喜歡小說的人數所占的百分比,即可求得總人數.
(2)利用總人數減去其它組的人數,即可求得喜歡科幻的人數,再利用百分比的意義求得喜歡科幻的百分比,據此可補充完整的圖1和圖2;利用小說所占的百分比乘以,即可得到扇形統(tǒng)計圖中小說所對應的圓心角度數.
(3)利用全校學生總人數乘以小說所占的百分比,即可得到全校學生中最喜歡小說人數.
(1)(名),
答:該校對200名學生進行了抽樣調查.
(2)喜歡科幻的人數為:(名),
喜歡科幻的人數所占的百分比為:,
補充完整的圖1和圖2如下所示:
扇形統(tǒng)計圖中小說所對應的圓心角度數為:.
(3)(名),
答:全校學生中最喜歡小說人數約為720名.
科目:初中數學 來源: 題型:
【題目】小明同學在一次社會實踐活動中,通過對某種蔬菜在1月份至7月份的市場行情進行統(tǒng)計分析后得出如下規(guī)律: ①該蔬菜的銷售價P(單位:元/千克)與時間x(單位:月份)滿足關系:P=9﹣x
②該蔬菜的平均成本y(單位:元/千克)與時間x(單位:月份)滿足二次函數關系y=ax2+bx+10,已知4月份的平均成本為2元/千克,6月份的平均成本為1元/千克.
(1)求該二次函數的解析式;
(2)請運用小明統(tǒng)計的結論,求出該蔬菜在第幾月份的平均利潤L(單位:元/千克)最大?最大平均利潤是多少?(注:平均利潤=銷售價﹣平均成本)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在邊長為6cm的正方形ABCD中,點E、F、G、H分別從點A、B、C、D同時出發(fā),均以1cm/s的速度向點B、C、D、A勻速運動,當點E到達點B時,四個點同時停止運動,在運動過程中,當運動時間為s時,四邊形EFGH的面積最小,其最小值是cm2 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】問題情境:如圖1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC度數.
小明的解題思路是:如圖2,過P作PE∥AB,通過平行線性質,可得∠APC=50°+60°=110°.
問題遷移:
(1)如圖3,AD∥BC,點P在射線OM上運動,當點P在A、B兩點之間運動時,∠ADP=∠α,∠BCP=∠β.試判斷∠CPD、∠α、∠β之間有何數量關系?請說明理由;
(2)在(1)的條件下,如果點P在A、B兩點外側運動時(點P與點A、B、O三點不重合),請你直接寫出∠CPD、∠α、∠β間的數量關系.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為鼓勵居民節(jié)約用水,某市決定對居民用水收費實行“階梯價”,即當每月用水量不超過15噸時(包括15噸),采用基本價收費;當每月用水量超過15噸時,超過部分每噸采用市場價收費.小蘭家4、5月份的用水量及收費情況如下表:
月份 | 用水量(噸) | 水費(元) |
4 | 22 | 51 |
5 | 20 | 45 |
(1)求該市每噸水的基本價和市場價.
(2)設每月用水量為n噸,應繳水費為m元,請寫出m與n之間的函數關系式.
(3)小蘭家6月份的用水量為26噸,則她家要繳水費多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,每個小正方形的邊長都是1的方格紙中,有線段AB和線段CD,點A、B、C、D的端點都在小正方形的頂點上.
(1)①在方格紙中畫出一個以線段AB為一邊的菱形ABEF,所畫的菱形的各頂點必須在小正方形的頂點上,并且其面積為20.
②在方格紙中以CD為底邊畫出等腰三角形CDK,點K在小正方形的頂點上,且△CDK的面積為5.
(2)在(1)的條件下,連接BK,請直接寫出線段BK的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=﹣ x2+bx+c與x軸交于點A和點B,與y軸交于點C,點B坐標為(6,0),點C坐標為(0,6),點D是拋物線的頂點,過點D作x軸的垂線,垂足為E,連接BD.
(Ⅰ)求拋物線的解析式及點D的坐標;
(Ⅱ)點F是拋物線上的動點,當∠FBA=∠BDE時,求點F的坐標;
(Ⅲ)若點M是拋物線上的動點,過點M作MN∥x軸與拋物線交于點N,點P在x軸上,點Q在坐標平面內,以線段MN為對角線作正方形MPNQ,請寫出點Q的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,△ABC三個頂點的坐標分別為A(-2,4),B(-2,1),C(-5,2).
(1)請畫出△ABC關于x軸對稱的△A1B1C1;
(2)將△A1B1C1的三個頂點的橫坐標與縱坐標同時乘-2,得到對應的點A2,B2,C2,請畫出△A2B2C2;
(3)寫出△A1B1C1的面積;△A2B2C2的面積.(不寫解答過程,直接寫出結果)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】問題探索:
(1)已知一個分數,如果分子、分母同時增加1,分數的值是增大還是減小?請說明你的理由.
(2)若正分數中分子和分母同時增加2,3,…,k(整數k>0),情況如何?
(3)請你用上面的結論解釋下面的問題:
建筑學規(guī)定:民用住宅窗戶面積必須小于地板面積,但按采光標準,窗戶面積與地板面積的比應不小于10%,并且這個比值越大,住宅的采光條件越好,問:同時增加相等的窗戶面積和地板面積,住宅的采光條件是變好了,還是變壞了?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com