【題目】母親節(jié)前期,某花店購進(jìn)康乃馨和玫瑰兩種鮮花,銷售過程中發(fā)現(xiàn)康乃馨比玫瑰銷售量大,店主決定將玫瑰每枝降價1元促銷,降價后30元可購買玫瑰的數(shù)量是原來購買玫瑰數(shù)量的1.5倍.

(1)求降價后每枝玫瑰的售價是多少元?

(2)根據(jù)銷售情況,店主用不多于900元的資金再次購進(jìn)兩種鮮花共500枝,康乃馨進(jìn)價為2/枝,玫瑰進(jìn)價為1.5/枝,問至少購進(jìn)玫瑰多少枝?

【答案】(1)2元;(2)至少購進(jìn)玫瑰200枝.

【解析】試題分析:(1)設(shè)降價后每枝玫瑰的售價是x元,然后根據(jù)降價后30元可購買玫瑰的數(shù)量是原來購買玫瑰數(shù)量的1.5倍,列分式方程求解即可,注意檢驗結(jié)果;

(2)根據(jù)店主用不多于900元的資金再次購進(jìn)兩種鮮花共500枝,列不等式求解即可.

試題解析:(1)設(shè)降價后每枝玫瑰的售價是x元,依題意有

×1.5.

解得x=2.

經(jīng)檢驗,x=2是原方程的解,且符合題意.

答:降價后每枝玫瑰的售價是2元.

(2)設(shè)購進(jìn)玫瑰y枝,依題意有

2(500-y)+1.5y≤900.

解得y≥200.

答:至少購進(jìn)玫瑰200枝.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)C在線段AB上,AC=6cm,MB=10cm,點(diǎn)M,N分別為AC,BC的中點(diǎn).
(1)求線段BC,MN的長;
(2)若C在線段AB的延長線上,且滿足AC﹣BC=acm,M,N分別是線段AC,BC的中點(diǎn),請畫出圖形,并用a的式子表示MN的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,網(wǎng)格線的交點(diǎn)叫格點(diǎn),格點(diǎn)P是∠AOB的邊OB上的一點(diǎn)(請利用網(wǎng)格作圖,保留作圖痕跡).
(1)過點(diǎn)P畫OB的垂線,交OA于點(diǎn)C;
(2)線段的長度是點(diǎn)O到PC的距離;
(3)PC<OC的理由是;
(4)過點(diǎn)C畫OB的平行線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知函數(shù)y=kx+b的圖象與x軸、y軸分別交于點(diǎn)A、B,與函數(shù)y=x的圖象交于點(diǎn)M,點(diǎn)A的坐標(biāo)為(6,0),點(diǎn)M的橫坐標(biāo)為2,過點(diǎn)P(a,0),作x軸的垂線,分別交函數(shù)y=kx+b和y=x的圖象于點(diǎn)C、D.

(1)求函數(shù)y=kx+b的表達(dá)式;

(2)若點(diǎn)M是線段OD的中點(diǎn),求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若△ABC∽△ABC′,相似比為1:2,則△ABC與△ABC′的面積的比為( 。
A.1:2
B.2:1
C.1:4
D.4:1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(9)如圖,在平面直角坐標(biāo)系中,Rt△ABC的三個頂點(diǎn)分別是A(-3,2),B(0,4),C(0,2).

(1)△ABC以點(diǎn)C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫出旋轉(zhuǎn)后對應(yīng)的△A1B1C;平移△ABC,A的對應(yīng)點(diǎn)A2的坐標(biāo)為(0,4),畫出平移后對應(yīng)的△A2B2C2;

(2)若將△A1B1C繞某一點(diǎn)旋轉(zhuǎn)可以得到△A2B2C2請直接寫出旋轉(zhuǎn)中心的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ab的相反數(shù)是( ).
A.ab
B.-(ab)
C.ba
D.-ab

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=AC,點(diǎn)D、E、F分別在AB、BC、AC邊上,且BE=CF,BD=CE.

(1)求證:DEF是等腰三角形;

(2)當(dāng)∠A=40°時,求∠DEF的度數(shù);

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(14分)如圖1,已知點(diǎn)B(0,6),點(diǎn)C為x軸上一動點(diǎn),連接BC,△ODC和△EBC都是等邊三角形.

  

  圖1          圖2           圖3

(1)求證:DE=BO;

(2)如圖2,當(dāng)點(diǎn)D恰好落在BC上時.

求OC的長及點(diǎn)E的坐標(biāo);

在x軸上是否存在點(diǎn)P,使△PEC為等腰三角形?若存在,寫出點(diǎn)P的坐標(biāo);若不存在,說明理由;

如圖3,點(diǎn)M是線段BC上的動點(diǎn)(點(diǎn)B,C除外),過點(diǎn)M作MG⊥BE于點(diǎn)G,MH⊥CE于點(diǎn)H當(dāng)點(diǎn)M運(yùn)動時,MH+MG的值是否發(fā)生變化?若不會變化,直接寫出MH+MG的值;若會變化,簡要說明理由.

查看答案和解析>>

同步練習(xí)冊答案