【題目】如圖,圖中小方格都是邊長(zhǎng)為1的正方形,△ABC與△A′B′C′是關(guān)于點(diǎn)G為位似中心的位似圖形,它們的頂點(diǎn)都在小正方形頂點(diǎn)上.
(1)畫(huà)出位似中心點(diǎn)G;
(2)若點(diǎn)A、B在平面直角坐標(biāo)系中的坐標(biāo)分別為(﹣6,0),(-3,2),點(diǎn)P(m,n)是線(xiàn)段AC上任意一點(diǎn),則點(diǎn)P在△A′B′C′上的對(duì)應(yīng)點(diǎn)P′的坐標(biāo)為 .
【答案】(1)作圖見(jiàn)解析;(2)P′的坐標(biāo)為(2m,2n)
【解析】試題分析:(1)連接C′C并延長(zhǎng)交A′A的延長(zhǎng)線(xiàn)于點(diǎn)G;(2)在線(xiàn)段AC上隨機(jī)取一點(diǎn)P,連接OP并延長(zhǎng)與線(xiàn)段A′C′的交點(diǎn)即為P′,作P′E⊥x軸,PF⊥x軸,不難證明△POF∽△P′OE,由此可得==,然后充分利用位似三角形的性質(zhì),求出,即可求出、,即可求出P′E、OE的長(zhǎng)度,點(diǎn)P′的坐標(biāo)即可表示出來(lái).
試題解析:
(1)
(2)如圖建立直角坐標(biāo)系,在線(xiàn)段AC上隨機(jī)取一點(diǎn)P,連接OP并延長(zhǎng)與線(xiàn)段A′C′的交點(diǎn)即為P′,作P′E⊥x軸,PF⊥x軸,
∵P′E⊥x軸,PF⊥x軸,
∴∠P′EO=∠PFO=90°,
∵∠POF=∠P′OE,
∴△POF∽△P′OE,
∴==,
∵OA=6,O A′=12,
∴=,
∵△OAP與△OA′P′是關(guān)于點(diǎn)G為位似中心的位似圖形,
∴==,
∴==,
∵PF=n,OF=-m,
∴P′E=2n,OE=-2m,
∴P′(2m,2n).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC、△BDE都是等腰直角三角形,∠ABC=∠DBE=90°,連接AE、CD交于點(diǎn)F,連接BF.求證:
(1)AE=CD;
(2)BF平分∠AFD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖在直角坐標(biāo)系中,已知A(0,a),B(b,0)C(3,c)三點(diǎn),若a,b,c滿(mǎn)足關(guān)系式:|a﹣2|+(b﹣3)2+=0.
(1)求a,b,c的值.
(2)求四邊形AOBC的面積.
(3)是否存在點(diǎn)P(x,﹣ x),使△AOP的面積為四邊形AOBC的面積的兩倍?若存在,求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,C是AB延長(zhǎng)線(xiàn)上一點(diǎn),CD與⊙O相切于點(diǎn)E,AD⊥CD于點(diǎn)D.
(1)求證:AE平分∠DAC;
(2)若AB=4,∠ABE=60°.
①求AD的長(zhǎng);
②求出圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,O是正△ABC內(nèi)一點(diǎn),OA=3,OB=4,OC=5,將線(xiàn)段BO以點(diǎn)B為旋轉(zhuǎn)中心逆時(shí)針旋轉(zhuǎn)60°得到線(xiàn)段BO′,下列結(jié)論:①點(diǎn)O與O′的距離為4;②∠AOB=150°;③.其中正確的結(jié)論是( )
A. ①B. ①②C. ②③D. ①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知⊙O的直徑為10,點(diǎn)A、點(diǎn)B、點(diǎn)C在⊙O上,∠CAB的平分線(xiàn)交⊙O于點(diǎn)D.
(1)如圖①,若BC為⊙O的直徑,AB=6,求AC,BD的長(zhǎng);
(2)如圖②,若∠CAB=60°,CF⊥BD,①求證:CF是⊙O的切線(xiàn);②求由弦CD、CB以及弧DB圍成圖形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,將兩個(gè)完全相同的三角形紙片ABC和DEC重合放置,其中∠C=900,∠B=∠E=300.
(1)操作發(fā)現(xiàn)如圖2,固定△ABC,使△DEC繞點(diǎn)C旋轉(zhuǎn)。當(dāng)點(diǎn)D恰好落在BC邊上時(shí),填空:線(xiàn)段DE與AC的位置關(guān)系是 ;
② 設(shè)△BDC的面積為S1,△AEC的面積為S2。則S1與S2的數(shù)量關(guān)系是 。
(2)猜想論證
當(dāng)△DEC繞點(diǎn)C旋轉(zhuǎn)到圖3所示的位置時(shí),小明猜想(1)中S1與S2的數(shù)量關(guān)系仍然成立,并嘗試分別作出了△BDC和△AEC中BC,CE邊上的高,請(qǐng)你證明小明的猜想。
(3)拓展探究
已知∠ABC=600,點(diǎn)D是其角平分線(xiàn)上一點(diǎn),BD=CD=4,OE∥AB交BC于點(diǎn)E(如圖4),若在射線(xiàn)BA上存在點(diǎn)F,使S△DCF =S△BDC,請(qǐng)直接寫(xiě)出相應(yīng)的BF的長(zhǎng)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:在△ABC中,AC=BC,∠ACB=90°,點(diǎn)D是AB的中點(diǎn),點(diǎn)E是AB邊上一點(diǎn).
(1)直線(xiàn)BF垂直于直線(xiàn)CE于點(diǎn)F,交CD于點(diǎn)G(如圖1),求證:AE=CG;
(2)直線(xiàn)AH垂直于直線(xiàn)CE,垂足為點(diǎn)H,交CD的延長(zhǎng)線(xiàn)于點(diǎn)M(如圖2),找出圖中與BE相等的線(xiàn)段,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)為了了解九年級(jí)學(xué)生體能狀況,從九年級(jí)學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行體能測(cè)試,測(cè)試結(jié)果分為A,B,C,D四個(gè)等級(jí),并依據(jù)測(cè)試成績(jī)繪制了如下兩幅尚不完整的統(tǒng)計(jì)圖;
(1)這次抽樣調(diào)查的樣本容量是 ,并補(bǔ)全條形圖;
(2)D等級(jí)學(xué)生人數(shù)占被調(diào)查人數(shù)的百分比為 ,在扇形統(tǒng)計(jì)圖中C等級(jí)所對(duì)應(yīng)的圓心角為 °;
(3)該校九年級(jí)學(xué)生有1500人,請(qǐng)你估計(jì)其中A等級(jí)的學(xué)生人數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com