精英家教網 > 初中數學 > 題目詳情
已知n+
24n
是整數,則正整數n的最小值是
 
分析:先把
24n
=2
6n
,從而判斷出6n是完全平方數,所以得出答案正整數n的最小值是6.
解答:解:
24n
=2
6n
,則6n是完全平方數,
∴正整數n的最小值是6,
故答案為6.
點評:本題考查了算術平方根,解題的關鍵是把
24n
化為2
6n
,從而判斷出6n是完全平方數,然后解題就容易了.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

已知
24n
是整數,則滿足條件的最小正整數n等于( 。
A、4B、5C、6D、7

查看答案和解析>>

科目:初中數學 來源: 題型:

已知
x-1
+
1-x
=y+4,n+
24n
是整數,則正整數n的最小值與xy的平方根的積為
±
6
±
6

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

已知
x-1
+
1-x
=y+4,n+
24n
是整數,則正整數n的最小值與xy的平方根的積為______.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

已知
24n
是整數,則滿足條件的最小正整數n等于(  )
A.4B.5C.6D.7

查看答案和解析>>

同步練習冊答案