(2010•路南區(qū)三模)如圖,把一塊直角三角板的直角頂點(diǎn)放在直尺的一邊上,如果∠1=20°,那么∠2的度數(shù)等于( 。
分析:由把一塊直角三角板的直角頂點(diǎn)放在直尺的一邊上,∠1=20°,可求得∠ABE的度數(shù),又由AB∥CD,根據(jù)兩直線平行,同位角相等,即可求得∠2的度數(shù).
解答:解:∵∠EDF=90°,∠1=20°,
∴∠ADE=70°,
∵AB∥CD,
∴∠2=∠ADE=70°.
故選D.
點(diǎn)評(píng):此題考查了平行線的性質(zhì).解題的關(guān)鍵是注意掌握兩直線平行,同位角相等定理的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2010•路南區(qū)三模)一種營(yíng)養(yǎng)品有大小盒兩種包裝,1大盒2小盒共裝44瓶,3大盒2小盒共裝84瓶,則1大盒1小盒共裝
32
32
瓶.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2010•路南區(qū)三模)如圖①,在菱形ABCD和菱形BEFG中,點(diǎn)A、B、E在同一條直線上,P是線段DF的中點(diǎn),連接PG,PC.若
BD
AC
=
GE
BF
=
3

(1)請(qǐng)寫(xiě)出線段PG與PC所滿足的關(guān)系;并加以證明.
(2)若將圖①中的菱形BEFG饒點(diǎn)B順時(shí)針旋轉(zhuǎn),使菱形BEFG的對(duì)角線BF恰好與菱形ABCD的邊AB在同一條直線上,原問(wèn)題中的其他條件不變,如圖②.那么你在(1)中得到的結(jié)論是否發(fā)生變化?若沒(méi)變化,直接寫(xiě)出結(jié)論,若有變化,寫(xiě)出變化的結(jié)果.
(3)若將圖①中的菱形BEFG饒點(diǎn)B順時(shí)針旋轉(zhuǎn)任意角度,原問(wèn)題中的其他條件不變,請(qǐng)猜想(1)中的結(jié)論有沒(méi)有變化?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2010•路南區(qū)三模)已知,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,BD平分∠ABC,交AC于點(diǎn)D.動(dòng)點(diǎn)P從D點(diǎn)出發(fā)沿DC向終點(diǎn)C運(yùn)動(dòng),速度為每秒1個(gè)單位,動(dòng)點(diǎn)Q從B點(diǎn)出發(fā)沿BA向終點(diǎn)A運(yùn)動(dòng),速度為每秒4個(gè)單位.兩點(diǎn)同時(shí)出發(fā),當(dāng)一點(diǎn)到達(dá)終點(diǎn)時(shí),兩點(diǎn)停止運(yùn)動(dòng).設(shè)P、Q運(yùn)動(dòng)時(shí)間為t秒.
(1)求線段CD的長(zhǎng);
(2)求△BPQ的面積S與t之間的函數(shù)關(guān)系式;當(dāng)S=7.2時(shí),求t的值;
(3)在點(diǎn)P、點(diǎn)Q的移動(dòng)過(guò)程中,如果將△APQ沿其一邊所在直線翻折,翻折后的三角形與△APQ組成一個(gè)四邊形,直接寫(xiě)出使所組成的四邊形為菱形的t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2010•路南區(qū)三模)研究所對(duì)某種新型產(chǎn)品的產(chǎn)銷情況進(jìn)行了研究,為投資商在甲、乙兩地生產(chǎn)并銷售該產(chǎn)品提供了如下成果:第一年的年產(chǎn)量為x(噸)時(shí),所需的全部費(fèi)用y(萬(wàn)元)與x滿足關(guān)系式y(tǒng)=
1
10
x2+6x+80
,投入市場(chǎng)后當(dāng)年能全部售出,且在甲、乙兩地每噸的售價(jià)p、p(萬(wàn)元)均與x滿足一次函數(shù)關(guān)系.(注:年利潤(rùn)=年銷售額-全部費(fèi)用)
(1)成果表明,在甲地生產(chǎn)并銷售x噸時(shí),每噸的售價(jià)p(萬(wàn)元)與第一年的年產(chǎn)量為x(噸)之間大致滿足如圖所示的一次函數(shù)關(guān)系.請(qǐng)你直接寫(xiě)出p與x的函數(shù)關(guān)系式,并用含x的代數(shù)式表示甲地當(dāng)年的年銷售額;
(2)根據(jù)題中條件和(1)的結(jié)果,求年利潤(rùn)w(萬(wàn)元)與x(噸)之間的函數(shù)關(guān)系式和甲的最大年利潤(rùn);
(3)成果表明,在乙地生產(chǎn)并銷售x噸時(shí),p=-
1
10
x+n
(n為常數(shù)),且在乙地當(dāng)年的最大年利潤(rùn)為45萬(wàn)元.試確定n的值;
(4)受資金、生產(chǎn)能力等多種因素的影響,某投資商計(jì)劃第一年生產(chǎn)并銷售該產(chǎn)品18噸,根據(jù)(2)、(3)中的結(jié)果,請(qǐng)你通過(guò)計(jì)算幫他決策,選擇在甲地還是乙地產(chǎn)銷才能獲得較大的年利潤(rùn)?
參考公式:拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)是(-
b
2a
,
4ac-b2
4a
)

查看答案和解析>>

同步練習(xí)冊(cè)答案