【題目】小志自主創(chuàng)業(yè),在網(wǎng)上經(jīng)營一家水果店,銷售的水果中有盒裝草莓、荔枝、山竹,價格依次為40/盒、60/盒、80/盒.為增加銷量,小志對這三種水果進行促銷:一次性購買水果的總價超過100元時,超過的部分打5折,每筆訂單限購3盒.顧客支付成功后,小志會得到支付款的80%作為貨款.

1)顧客一筆訂單購買了上述三種水果各一盒,則小志收到的貨款是________元;

2)小志在兩筆訂單中共售出原價180元的水果,則他收到的貨款最少________元.

【答案】112 128

【解析】

1)根據(jù)優(yōu)惠的付款方式計算即可得到答案,(2)分三種情況討論,再按照優(yōu)惠分式計算即可得到答案.

解(1)由題意得:元,

小志收到的貨款是元,

2)當(dāng)一筆購買草莓、荔枝、另一筆購買山竹時,小志收到的貨款是元,

當(dāng)一筆購買草莓、山竹、另一筆購買荔枝時,小志收到的貨款是元,

當(dāng)一筆購買荔枝、山竹、另一筆購買草莓時,小志收到的貨款是元,

所以:收到的貨款最少是元.

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB6,AD2E是邊CD上一點,將ADE沿直線AE折疊得到AFEBF的延長線交邊CD于點G,則DG的最大值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于平面直角坐標(biāo)系內(nèi)任意一點P,過P點作軸于點M,軸于點N,連接,則稱的長度為點P的垂點距離,記為h.特別地,點P與原點重合時,垂點距離為0

1)點的垂點距離分別為________,___________,____________

2)點P在以為圓心,半徑為3上運動,求出點P的垂點距離h的取值范圍;

3)點T為直線位于第二象限內(nèi)的一點,對于點T的垂點距離h的每個值有且僅有一個點T與之對應(yīng),求點T的橫坐標(biāo)t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知拋物線x軸交于點,且.拋物線與y軸交于點C,將點C向上移動1個單位得到點D

1)求拋物線對稱軸;

2)求點D縱坐標(biāo)(用含有a的代數(shù)式表示);

3)已知點,若拋物線與線段只有一個公共點,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,將繞點順時針旋轉(zhuǎn)45°,得到,點關(guān)于直線的對稱點為,連接交直線于點,連接

1)根據(jù)題意補全圖形;

2)判斷的形狀,并證明;

3)連接,用等式表示線段,之間的數(shù)量關(guān)系,并證明.

溫馨提示:在解決第(3)問的過程中,如果你遇到困難,可以參考下面幾種解法的主要思路.

解法1的主要思路:

延長至點,使,連接,可證,再證是等腰直角三角形.

解法2的主要思路:

過點于點,可證是等腰直角三角形,再證

解法3的主要思路:

過點于點,過點于點,設(shè),,用含的式子表示

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線yax+2)(x4)(a為常數(shù),且a0)與x軸從左至右依次交于A,B兩點,與y軸交于點C,經(jīng)過點B的直線y=﹣x+拋物線的另一交點為D,且點D的橫坐標(biāo)為﹣5

1)求拋物線的函數(shù)表達式;

2)該二次函數(shù)圖象上有一點Px,y)使得SBCDSABP,求點P的坐標(biāo);

3)設(shè)F為線段BD上一點(不含端點),連接AF,求2AF+DF的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某社會團體準備購進甲、乙兩種防護服捐給一線抗疫人員,經(jīng)了解,購進5件甲種防護服和4件乙種防護服需要2萬元,購進10件甲種防護服和3件乙種防護服需要3萬元.

1)甲種防護服和乙種防護服每件各多少元?

2)實際購買時,發(fā)現(xiàn)廠家有兩種優(yōu)惠方案,方案一:購買甲種防護服超過20件時,超過的部分按原價的8折付款,乙種防護服沒有優(yōu)惠;方案二:兩種防護服都按原價的9折付款,該社會團體決定購買件甲種防護服和30件乙種防護服.

①求兩種方案的費用與件數(shù)的函數(shù)解析式;

②請你幫該社會團體決定選擇哪種方案更合算.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在△ABC中,AB=AC=5,BC=8,D,E分別為BC,AB邊上一點,∠ADE=∠C.

(1)求證:△BDE∽△CAD;

(2)若CD=2,求BE的長.

查看答案和解析>>

同步練習(xí)冊答案