【題目】已知反比例函數(shù)y=的圖象與一次函數(shù)y=kx+m的圖象交于點(2,1).
(1)分別求出這兩個函數(shù)的解析式;
(2)判斷P(﹣1,﹣5)是否在一次函數(shù)y=kx+m的圖象上,并說明原因.
【答案】(1)y=和y=2x﹣3.(2)點P在一次函數(shù)圖象上.
【解析】(1)將點(2,1)代入y=,求出k的值,再將k的值和點(2,1)代入解析式y=kx+m,即可求出m的值,從而得到兩個函數(shù)的解析式;
(2)將x=-1代入(1)中所得解析式,若y=-5,則點P(-1,-5)在一次函數(shù)圖象上,否則不在函數(shù)圖象上.
(1)∵y=經(jīng)過(2,1),
∴2=k.
∵y=kx+m經(jīng)過(2,1),
∴1=2×2+m,
∴m=-3.
∴反比例函數(shù)和一次函數(shù)的解析式分別是:y=和y=2x-3.
(2)點P(-1,-5)在一次函數(shù)y=2x-3圖象上.原因如下:
當x=-1時,y=2x-3=2×(-1)-3=-5.
∴點P(-1,-5)在一次函數(shù)圖象上.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,O為坐標原點,△ABC 的頂點 A (-2,0),點 B,C分別在x軸和y軸的正半軸上,∠ACB=90°,∠BAC=60°
(1)求點 B 的坐標;
(2)點 P 為 AC延長線上一點,過 P 作PQ∥x軸交 BC 的延長線于點 Q ,若點 P 的橫坐標為t,線段PQ的長為d,請用含t的式子表示d;
(3) 在(2)的條件下,當PA=d時,E是線段CQ上一點,連接OE,BP,若OE=BP,求∠APB-∠OEB的度數(shù)..
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,定義:在直角三角形ABC中,銳角α的鄰邊與對邊的比叫做角α的余切,記作ctanα,即ctanα==,根據(jù)上述角的余切定義,解下列問題:
(1)如圖1,若BC=3,AB=5,則ctanB= ;
(2)ctan60°= ;
(3)如圖2,已知:△ABC中,∠B是銳角,ctan C=2,AB=10,BC=20,試求∠B的余弦cosB的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖為長方形紙帶,AD平行BC,E、F分別是邊AD、BC上一點,∠DEF=α,α為銳角且α≠60°,將紙帶沿EF折疊如圖(1),再由GF折疊如圖(2),若GP平分∠MGF交直線EF于點P,則∠GPE=_____(含α的式子表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,四邊形ABCD中,AD∥BC,AD=CD,E是對角線BD上一點,且EA=EC.
(1)求證:四邊形ABCD是菱形;
(2)如果BE=BC,且∠CBE:∠BCE=2:3,求證:四邊形ABCD是正方形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校為了獎勵在數(shù)學競賽中獲獎的學生,買了若干本課外讀物準備送給他們,如果每人送3本,則剩余8本;如果前面每人送5本,則最后一人得到的課外讀物不足3本,設(shè)該校買了m本課外讀物,有x名學生獲獎,請解答下列問題:
(1)用含x的代數(shù)式表示m;
(2)求出該校的獲獎人數(shù)及所買課外讀物的本數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,ABCD的對角線AC,BD相交于點O.E,F(xiàn)是AC上的兩點,并且AE=CF,連接DE,BF.
(1)求證:△DOE≌△BOF;
(2)若BD=EF,連接DE,BF.判斷四邊形EBFD的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,D為BC邊上一點,∠B=30°∠DAB=45°.(1)求∠DAC的度數(shù);(2)請說明:AB=CD.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知x1,x2,x3,x2019都是不等于0的有理數(shù),若,求y1的值.
當x1>0時,;當x1<0時,,所以y1=±1,值有兩個.
(1)若,求y2的值為 ;
(2)若,則y3的值為 ;
(3)由以上探究猜想,共有 個不同的值,在y2019這些不同的值中,最大的值和最小的值的差等于 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com