某地長(zhǎng)途汽車(chē)客運(yùn)公司規(guī)定旅客可隨身攜帶一定質(zhì)量的行李,如果超過(guò)規(guī)定,則需要購(gòu)買(mǎi)行李精英家教網(wǎng)票,行李票費(fèi)用y(元)是行李質(zhì)量x(kg)的一次函數(shù),其圖象如圖所示,求:
(1)y與x之間的函數(shù)關(guān)系式;
(2)旅客可免費(fèi)攜帶的行李的質(zhì)量是多少?
分析:(1)由圖,已知兩點(diǎn),可根據(jù)待定系數(shù)法列方程,求函數(shù)關(guān)系式;
(2)旅客可免費(fèi)攜帶行李,即y=0,代入由(1)求得的函數(shù)關(guān)系式,即可知質(zhì)量為多少.
解答:解:(1)設(shè)一次函數(shù)y=kx+b,
∵當(dāng)x=60時(shí),y=6,當(dāng)x=80時(shí),y=10,
60k+b=6
80k+b=10
解之,得
k=
1
5
b=-6

∴所求函數(shù)關(guān)系式為y=
1
5
x-6(x≥30);

(2)當(dāng)y=0時(shí),
1
5
x-6=0,所以x=30,
故旅客最多可免費(fèi)攜帶30kg行李.
點(diǎn)評(píng):本題主要考查用待定系數(shù)法求一次函數(shù)關(guān)系式,并會(huì)用一次函數(shù)研究實(shí)際問(wèn)題,具備在直角坐標(biāo)系中的讀圖能力.注意自變量的取值范圍不能遺漏.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

某地長(zhǎng)途汽車(chē)客運(yùn)公司規(guī)定,旅客可隨身攜帶一定重量的行李,如果超過(guò)規(guī)定質(zhì)量,則需要購(gòu)買(mǎi)行李票,行李票費(fèi)用y(元)是行李重量x(千克)的一次函數(shù),根據(jù)圖象回答下列問(wèn)題:
(1)求y與x之間的函數(shù)關(guān)系式.
(2)求旅客最多可免費(fèi)攜帶多少千克行李?
(3)某旅客所買(mǎi)的行李票的費(fèi)用為4~15元,求他所帶行李的質(zhì)量范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

某地長(zhǎng)途汽車(chē)客運(yùn)公司規(guī)定,旅客可隨身攜帶一定重量的行李,如果超過(guò)規(guī)定質(zhì)量,則需要購(gòu)買(mǎi)行李票,行李票費(fèi)用y(元)是行李重量x(千克)的一次函數(shù),根據(jù)圖象回答下列問(wèn)題:
(1)求y與x之間的函數(shù)關(guān)系式.
(2)求旅客最多可免費(fèi)攜帶多少千克行李?
(3)某旅客所買(mǎi)的行李票的費(fèi)用為4~15元,求他所帶行李的質(zhì)量范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:專項(xiàng)題 題型:解答題

某地長(zhǎng)途汽車(chē)客運(yùn)公司規(guī)定旅客可隨身攜帶一定重量的行李,如果超過(guò)規(guī)定,則需要購(gòu)買(mǎi)行李票,行李票費(fèi)用y(元)是行李重量x(公斤)的一次函數(shù),如圖,求:
(1)y與x之間的函數(shù)關(guān)系式;
(2)旅客最多可免費(fèi)攜帶行李的公斤數(shù)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2002年四川省達(dá)州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2002•達(dá)州)某地長(zhǎng)途汽車(chē)客運(yùn)公司規(guī)定旅客可隨身攜帶一定質(zhì)量的行李,如果超過(guò)規(guī)定,則需要購(gòu)買(mǎi)行李票,行李票費(fèi)用y(元)是行李質(zhì)量x(kg)的一次函數(shù),其圖象如圖所示,求:
(1)y與x之間的函數(shù)關(guān)系式;
(2)旅客可免費(fèi)攜帶的行李的質(zhì)量是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案