【題目】如圖,在平面直角坐標(biāo)系中,等腰直角三角形 CDE 的腰 CD=2 x 軸上,∠ECD=45°,將三角形 CDE 繞點(diǎn) C 逆時(shí)針旋轉(zhuǎn) 75°,點(diǎn) E 的對(duì)應(yīng)點(diǎn) N 恰好落在 y 軸上,則點(diǎn) N 的坐標(biāo)為(

A. (0,3) B. (0,2 C. (0, D. (0,

【答案】C

【解析】

根據(jù)旋轉(zhuǎn)得出∠NCE=75°,求出∠NCO,由 CD=2,利用勾股定理求出 CE 的長(zhǎng)即為 CN 的長(zhǎng),即 可求出 ON 的長(zhǎng)度

∵將三角形 CDE 繞點(diǎn) C 逆時(shí)針旋轉(zhuǎn) 75°,點(diǎn) E 的對(duì)應(yīng)點(diǎn) N 恰好落在 OA 上,

∴∠ECN=75°,

∵∠ECD=45°,

∴∠NCO=180°﹣75°﹣45°=60°,

AOOB,

∴∠AOB=90°,

∴∠ONC=30°,

∵等腰直角三角形DCE 旋轉(zhuǎn)到CMN,

CMN 也是等腰直角三角形,

CM=2,

CN=2,

OC=

ON=

故選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,已知點(diǎn)A(0,4),點(diǎn)Bx正半軸上,且∠ABO=30度.動(dòng)點(diǎn)P在線段AB上從點(diǎn)A向點(diǎn)B以每秒個(gè)單位的速度運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.在x軸上取兩點(diǎn)M,N作等邊PMN.

(1)求直線AB的解析式;

(2)求等邊PMN的邊長(zhǎng)(用t的代數(shù)式表示),并求出當(dāng)?shù)冗?/span>PMN的頂點(diǎn)M運(yùn)動(dòng)到與原點(diǎn)O重合時(shí)t的值;

(3)如果取OB的中點(diǎn)D,以OD為邊在RtAOB內(nèi)部作如圖2所示的矩形ODCE,點(diǎn)C在線段AB上.設(shè)等邊PMN和矩形ODCE重疊部分的面積為S,請(qǐng)求出當(dāng)0≤t≤2秒時(shí)St的函數(shù)關(guān)系式,并求出S的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算下列各式,然后回答問(wèn)題

(x+4)(x+3)=

(x+4)(x-3)=

(x-4)(x+3)=

(x-4)(x-3)=

1)有上面各式總結(jié)規(guī)律:一般地,(x+p)(x+q)=

2)運(yùn)用上述規(guī)律,直接寫(xiě)出下式的結(jié)果:(x-199)(x+201)=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將長(zhǎng)方形紙片ABCD沿EF折疊,使點(diǎn)A與點(diǎn)C重合,點(diǎn)D落在點(diǎn)G處,EF為折痕.

(1)求證:△FGC≌△EBC;

(2)試判斷△CEF的形狀,并證明你的結(jié)論;

(3)AB=8,AD=4,求四邊形ECGF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,△ABC,∠B=90,AB=6cm,BC=8cm.

(1)點(diǎn)P從點(diǎn)A開(kāi)始沿AB邊向B以1cm/s的速度移動(dòng),點(diǎn)Q從B點(diǎn)開(kāi)始沿BC邊向點(diǎn)C以2cm/s的速度移動(dòng).如果P,Q分別從A,B同時(shí)出發(fā).

①經(jīng)過(guò)幾秒,使△PBQ的面積等于8?

②線段PQ能否將△ABC分成面積相等的兩部分?若能,求出運(yùn)動(dòng)時(shí)間;若不能說(shuō)明理由.

(2)若P點(diǎn)沿射線AB方向從A點(diǎn)出發(fā)以1cm/s的速度移動(dòng),點(diǎn)Q沿射線CB方向從C點(diǎn)出發(fā)以2cm/s的速度移動(dòng),P,Q同時(shí)出發(fā),問(wèn)幾秒后,△PBQ的面積為1?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC中,ACB=90°,ABC=25°,OAB的中點(diǎn). OA繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)θ °OP0<θ<180,當(dāng)BCP恰為軸對(duì)稱圖形時(shí),θ的值為_____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為養(yǎng)成學(xué)生課外閱讀的習(xí)慣,各學(xué)校普遍開(kāi)展了“我的夢(mèng).中國(guó)夢(mèng)”課外閱讀活動(dòng).某校為了解七年級(jí)1200名學(xué)生課外日閱讀所用時(shí)間情況,從中隨機(jī)抽查了部分同學(xué),進(jìn)行了相關(guān)統(tǒng)計(jì),整理并繪制出如下不完整的頻數(shù)分布表和頻數(shù)分布直方圖,請(qǐng)根據(jù)圖表信息解答下列問(wèn)題:

(1)表中 a= ,b= ;

(2)請(qǐng)補(bǔ)全頻數(shù)分布直方圖中空缺的部分;

(3)樣本中,學(xué)生日閱讀所用時(shí)間的中位數(shù)落在第 組;

(4)請(qǐng)估計(jì)該校七年級(jí)學(xué)生日閱讀量不足 1 小時(shí)的人數(shù).

組別

時(shí)間段(小時(shí))

頻數(shù)

頻率

1

0≤x<0.5

10

0.05

2

0.5≤x<1.0

20

0.10

3

1.0≤x<1.5

80

b

4

1.5≤x<2.0

a

0.35

5

2.0≤x<2.5

12

0.06

6

2.5≤x<3.0

8

0.04

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一列快車從甲地駛往乙地,一列慢車從乙地駛往甲地,兩車同時(shí)出發(fā),設(shè)慢車行駛的時(shí)間為,兩車之間的距離,圖中的折線表示之間的函數(shù)關(guān)系,根據(jù)圖象進(jìn)行一下探究:

信息讀。1)甲、乙兩地之間的距離為______

2)請(qǐng)解釋圖中點(diǎn)的實(shí)際意義:_______

圖象理解(3)求慢車和快車的速度:

4)求線段所表示的之間的函數(shù)關(guān)系式,并寫(xiě)出自變量的取值范圍:

問(wèn)題解決(5)若第二列快車也從甲地出發(fā)駛往乙地,速度與第一列快車相同,在第一列快車與慢車相遇分鐘后,第二列快車與慢車相遇,求第二列快車比第一列快車晚出發(fā)多少小時(shí)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如下圖所示,直線y=-x+3與坐標(biāo)軸分別交于點(diǎn)A,B,與直線y=x交于點(diǎn)C,線段OA上的點(diǎn)Q以每秒1個(gè)單位的速度從點(diǎn)O出發(fā)向點(diǎn)A作勻速運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒,連結(jié)CQ.

(1)求出點(diǎn)C的坐標(biāo);

(2)OQC是等腰直角三角形,則t的值為________;

(3)CQ平分OAC的面積,求直線CQ對(duì)應(yīng)的函數(shù)表達(dá)式.

查看答案和解析>>

同步練習(xí)冊(cè)答案