【題目】如圖,拋物線y=ax2+bx+8與x軸交于A、B兩點,交y軸于點C,連接BC,且點D坐標為(﹣2,4),tan∠OBC=.
(1)求拋物線的解析式;
(2)P為第四象限拋物線上一點,連接PC、PD,設點P的橫坐標為t,△PCD的面積為S,求S與t的函數(shù)關(guān)系式;
(3)延長CD交x軸于點E,連接PE,直線DG與x軸交于點G,與PE交于點Q,且OG=2,點F在DQ上,∠DQE+∠BCF=45°,若FQ=2,求點P的坐標.
【答案】(1)y=﹣x2+x+8;(2)S=t2+t,(3)P(,).
【解析】
(1)在Rt△OBC中,tan∠OBC==,則OB=6,即可求解;
(2)S=S△PMD﹣S△PMC=PM(xP﹣xD﹣xP)即可求解;
(3)證明FC是∠OCB角平分線,求出點V(,0),點F(3,﹣1)、點Q(5,﹣3),即可求解.
(1)在Rt△OBC中,tan∠OBC==,∴OB=6,
∴點B(6,0),
∴,解得:,
故拋物線的表達式為:y=x2+x+8…①;
(2)過點P作PM∥y軸交CD延長線于點M,
將D、C的坐標代入一次函數(shù)表達式并解得:
直線DC的表達式為:y=2x+8,
則點E(﹣4,0),
設點M(t,2t+8),
則PM=2t+8﹣(t2+t+8)=t2+t,
S=S△PMD﹣S△PMC=PM(xP﹣xD﹣xP)=×2(t2+t)=t2+t,
(3)將點G(2,0)、點D坐標代入一次函數(shù)表達式并解得:
直線DG的表達式為:y=﹣x+2…②,
∴∠DGA=45°,
過點F作FK⊥y軸于點K,過點Q作QL⊥FK于點L交x軸于點S,直線CF交x軸于點V,
∴∠FQL=∠LFQ=45°,∴FL=QL=FQ=2,
設點F(m,﹣m+2),則點Q(m+2,﹣m),
tan∠FCK==,tan∠QEB==,
∴∠FCK=∠QEB,
∵∠QEB+∠BCF=45°,∠DQE+∠QEB=45°,
∴∠QEB=∠BCF,∠FCK=∠BCF,
過點V作VR⊥BC于點R,設OV=n,
則VB=6﹣n,CO=CR=8,則BR=2,
則(6﹣n)2=n2+4,解得:n=,則點V(,0),
將直線C(0,8)、V(,0)坐標代入一次函數(shù)表達式并解得:
直線CV(CF)的表達式為:y=﹣3x+8…③,
聯(lián)立②③并解得:x=3,則點F(3,﹣1),
而FQ=2,在等腰直角三角形FQL中,
FL=QL=2×=2,
故點Q(5,﹣3),點E(﹣4,0),
同理可得直線EQ的表達式為:y=x﹣…④,
聯(lián)立①④并解得:x=(舍去負值),
∴P(,).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C、D為⊙O上兩點,且,過點O作OE⊥AC于點E⊙O的切線AF交OE的延長線于點F,弦AC、BD的延長線交于點G.
(1)求證:∠F=∠B;
(2)若AB=12,BG=10,求AF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明和小亮組成團隊參加某科學比賽.該比賽的規(guī)則是:每輪比賽一名選手參加,若第一輪比賽得分滿60則另一名選手晉級第二輪,第二輪比賽得分最高的選手所在團隊取得勝利.為了在比賽中取得更好的成績,兩人在賽前分別作了九次測試,如圖為二人測試成績折線統(tǒng)計圖,下列說法合理的是( )
①小亮測試成績的平均數(shù)比小明的高;②小亮測試成績比小明的穩(wěn)定;③小亮測試成績的中位數(shù)比小明的高;④小亮參加第一輪比賽,小明參加第二輪比賽,比較合理.
A. ①③B. ①④C. ②③D. ②④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2018年南充市有縣區(qū)申報了長壽之鄉(xiāng),并獲認定.上月某中學九(1)班學生社會實踐前往該區(qū)一鄉(xiāng)鎮(zhèn)調(diào)研進入老齡化社會的數(shù)據(jù).按國際通行標準,當一個國家或地區(qū)60及60歲以上人口達到人口總數(shù)的10%,或65及65歲以上人口達到人口總數(shù)的7%,這個區(qū)域進入老齡化社會.被調(diào)查的800人年齡情況統(tǒng)計圖如下:
(1)該鄉(xiāng)鎮(zhèn)是否進入老齡化社會?并說明理由.
(2)請你為該鄉(xiāng)鎮(zhèn)提一條合理化建議.
(3)在該鄉(xiāng)鎮(zhèn)60歲及以上人群中隨機抽取1人,求年齡不低于70歲的概率。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在小正方形的邊長均為1的方格紙中,有線段AB,點A、B均在小正方形的頂點上
(1)在圖1中畫一個以線段AB為一邊的矩形,點C、D均在小正方形的頂點上,且矩形ABCD的面積為4;
(2)在圖2中畫一個三角形△ABE,點E在小正方形的頂點上,且△ABE的面積為2,且∠AEB的正切值為,請直接寫出BE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在矩形中,,.分別以,所在直線為軸,軸,建立如圖所示的平面直角坐標系.點是邊的中點,過點的反比例函數(shù)的圖象與邊交于點.
(1)求的值及點的坐標;
(2)問在軸上是否存在點,使得的值最小,若存在,請求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC的三個頂點的坐標分別為A(3,3)、B(﹣1,0)、C(4,0).
(1)經(jīng)過平移,可使△ABC的頂點A與坐標原點O重合,則點C的對應點C1的坐標為 ;(不用畫圖)
(2)在圖中畫出將△ABC繞點B逆時針旋轉(zhuǎn)90°得到的△A′BC′;
(3)以點A為位似中心放大△ABC,得到△AB2C2,使S△ABC:S=1:4,在圖中畫出△AB2C2.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,小明利用所學數(shù)學知識測量某建筑物BC高度,采用了如下的方法:小明從與某建筑物底端B在同一水平線上的A點出發(fā),先沿斜坡AD行走260米至坡頂D處,再從D處沿水平方向繼續(xù)前行若干米后至點E處,在E點測得該建筑物頂端C的仰角為72°,建筑物底端B的俯角為63°,其中點A、B、C、D、E在同一平面內(nèi),斜坡AD的坡度i=1:2.4,根據(jù)小明的測量數(shù)據(jù),計算得出建筑物BC的高度約為( )米(計算結(jié)果精DE確到0.1米,參考數(shù)據(jù):sin72°≈0.95,tan72°≈3.08,sin63°≈0.89,tan63°≈1.96)
A.157.1 B.157.4 C.257.4 D.257.1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,線段AC的垂直平分線交AC于D點,交BC于E點,過點A作BC的平行線交直線ED于F點,連接AE,CF.
(1)求證:四邊形AECF是菱形;
(2)若AB=10,∠ACB=30°,求菱形AECF的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com