【題目】如圖1,在正方形ABCD中,點E,F(xiàn)分別是邊BC,AB上的點,且CE=BF.連接DE,過點EEGDE,使EG=DE,連接FG,F(xiàn)C.

(1)請判斷:FGCE的關(guān)系是___;

(2)如圖2,若點E,F(xiàn)分別是邊CB,BA延長線上的點,其它條件不變,(1)中結(jié)論是否仍然成立?請作出判斷并給予證明;

(3)如圖3,若點E,F(xiàn)分別是邊BC,AB延長線上的點,其它條件不變,(1)中結(jié)論是否仍然成立?請直接寫出你的判斷.

【答案】(1)FG=CE,F(xiàn)GCE;(2)成立;(3)成立.

【解析】試題分析:(1)只要證明四邊形CDGF是平行四邊形即可得出FG=CE,FGCE

(2)構(gòu)造輔助線后證明HGECED,利用對應(yīng)邊相等求證四邊形GHBF是矩形后,利用等量代換即可求出FG=C,FGCE

(3)證明CBFDCE后,即可證明四邊形CEGF是平行四邊形.

試題解析:解:(1)FG=CE,FGCE

(2)過點GGHCB的延長線于點H.∵EGDE,∴∠GEH+∠DEC=90°.∵∠GEH+∠HGE=90°,∴∠DEC=∠HEHGECED中,∵∠GHE=∠DCE,∠HGE=∠DEC,EG=DE,∴HGECED(AAS),∴GH=CE,HE=CD.∵CE=BF,∴GH=BF.∵GHBF,∴四邊形GHBF是矩形,GF=BH,FGCH,∴FGCE.∵四邊形ABCD是正方形,CD=BC,∴HE=BC,∴HE+EB=BC+EB,∴BH=EC,∴FG=EC

(3)∵四邊形ABCD是正方形,BC=CD,∠FBC=∠ECD=90°.CBFDCE中,BF=CE,∠FBC=∠ECD,BC=DC,∴CBFDCE(SAS),∴∠BCF=∠CDECF=DE.∵EG=DE,∴CF=EG.∵DEEG,∴∠DEC+∠CEG=90°.∵∠CDE+∠DEC=90°,∴∠CDE=∠CEG,∴∠BCF=∠CEG,∴CFEG,∴四邊形CEGF平行四邊形,FGCE,FG=CE

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,∠A=30°,AC=4,M是AB邊上一動點,N是AC邊上的一動點,則MN+MC的最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校全體同學(xué)參加了某項捐款活動,隨機抽查了部分同學(xué)捐款的情況,并統(tǒng)計繪制成了如圖兩幅不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖,請根據(jù)所提供的信息,解答下列問題:

1)本次共抽查學(xué)生  人,并將條形圖補充完整:

2)捐款金額的眾數(shù)是  元,中位數(shù)是  元;

3)若該校共有2000名學(xué)生參加捐款,根據(jù)樣本平均數(shù)估計該校大約可捐款多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠接受了 20 天內(nèi)生產(chǎn)1200 GH 型電子產(chǎn)品的總?cè)蝿?wù)。已知每臺GH 型產(chǎn)品由 4 G 型裝 置和3 H 型裝置配套組成。工廠現(xiàn)有80 名工人,每個工人每天能加工6 G 型裝置或3 H 型裝置。工廠將所有工人分成兩組同時開始加工,每組分別加工一種裝置,并要求每天加工的G H 型裝置數(shù)量正好組成GH 型產(chǎn)品.

1)按照這樣的生產(chǎn)方式,工廠每天能配套組成多少套GH 型電子產(chǎn)品?

2)工廠補充 40名新工人,這些新工人只能獨立進行G 型裝置的加工,且每人每天只能加工 4G型裝置,則補充新工人后每天能配套生產(chǎn)多少產(chǎn)品?補充新工人后20天內(nèi)能完成總?cè)蝿?wù)嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在一筆直的海岸線l上有A、B兩個觀測站,AB=2km,從A測得船C在北偏東45°的方向,從B測得船C在北偏東22.5°的方向,則船C離海岸線l的距離(即CD的長)為_____km(精確到0.1).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+與直線AB交于點A(﹣1,0),B(4,),點D是拋物線A、B兩點間部分上的一個動點(不與點A、B重合),直線CDy軸平行,交直線AB于點C,連接AD,BD.

(1)求拋物線的表達式;

(2)設(shè)點D的橫坐標(biāo)為m,ADB的面積為S,求S關(guān)于m的函數(shù)關(guān)系式,并求出當(dāng)S取最大值時的點C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙OABC的外接圓,O點在BC邊上,∠BAC的平分線交⊙O于點D,連接BD、CD,過點DBC的平行線,與AB的延長線相交于點P

1)求證:PD是⊙O的切線;

2)求證:PBD∽△DCA;

3)當(dāng)AB=6AC=8時,求線段PB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,BA=BC,對角線BD平分∠ABC,PBD上一點,過點PPMAD,PNCD,垂足分別為M,N

(1)求證:點A與C關(guān)于直線BD對稱.

(2)若∠ADC=90°,求證四邊形MPND為正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察下列兩個等式:,給出定義如下:我們稱使等式ab2ab1成立的一對有理數(shù)ab同心有理數(shù)對,記為(a,b),如:數(shù)對(1),(2,),都是同心有理數(shù)對”.

1)數(shù)對(﹣21),(3)是同心有理數(shù)對的是__________.

2)若(a,3)是同心有理數(shù)對,求a的值;

3)若(m,n)是同心有理數(shù)對,則(﹣n,﹣m  同心有理數(shù)對(填不是),說明理由.

查看答案和解析>>

同步練習(xí)冊答案