【題目】兩塊等腰直角三角形紙片AOB和COD按圖1所示放置,直角頂點重合在點O處,AB=13,CD=7.保持紙片AOB不動,將紙片COD繞點O逆時針旋轉(zhuǎn)a(0α90°),如圖2所示.當(dāng)BD與CD在同一直線上(如圖3)時,則△ABC的面積為____.
【答案】30
【解析】
設(shè)AO與BC的交點為點G,根據(jù)等腰直角三角形的性質(zhì)證△AOC≌△BOD,進而得出△ABC是直角三角形,設(shè)AC=x,BC=x+7,由勾股定理求出x,再計算△ABC的面積即可.
解:設(shè)AO與BC的交點為點G,
∵∠AOB=∠COD=90°,
∴∠AOC=∠DOB,
在△AOC和△BOD中,
,
∴△AOC≌△BOD(SAS),
∴AC=BD,∠CAO=∠DBO,
∵∠DBO+∠OGB=90°,
∵∠OGB=∠AGC,
∴∠CAO+∠AGC=90°,
∴∠ACG=90°,
∴CG⊥AC,
設(shè)AC=x,則BD=AC=x,BC=x+7,
∵BD、CD在同一直線上,BD⊥AC,
∴△ABC是直角三角形,
∴AC2+BC2=AB2,
,
解得x=5,即AC=5,BC=5+7=12,
在直角三角形ABC中,S= ,
故答案為:30.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在初三綜合素質(zhì)評定結(jié)束后,為了了解年級的評定情況,現(xiàn)對初三某班的學(xué)生進行了評定等級的調(diào)查,繪制了如下男女生等級情況折線統(tǒng)計圖和全班等級情況扇形統(tǒng)計圖.
(1)調(diào)查發(fā)現(xiàn)評定等級為合格的男生有2人,女生有1人,則全班共有 名學(xué)生.
(2)補全女生等級評定的折線統(tǒng)計圖.
(3)根據(jù)調(diào)查情況,該班班主任從評定等級為合格和A的學(xué)生中各選1名學(xué)生進行交流,請用樹形圖或表格求出剛好選中一名男生和一名女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在梯形中,,,,.P為線段上的一動點,且和B、C不重合,連接,過點P作交射線于點E.
聰聰根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對這個問題進行了研究:
(1)通過推理,他發(fā)現(xiàn),請你幫他完成證明.
(2)利用幾何畫板,他改變的長度,運動點P,得到不同位置時,、的長度的對應(yīng)值:
當(dāng)時,得表1:
… | 1 | 2 | 3 | 4 | 5 | … | |
… | 0.83 | 1.33 | 1.50 | 1.33 | 0.83 | … |
當(dāng)時,得表2:
… | 1 | 2 | 3 | 4 | 5 | 6 | 7 | … | |
… | 1.17 | 2.00 | 2.50 | 2.67 | 2.50 | 2.00 | 1.17 | … |
這說明,點P在線段上運動時,要保證點E總在線段上,的長度應(yīng)有一定的限制.
①填空:根據(jù)函數(shù)的定義,我們可以確定,在和的長度這兩個變量中,_____的長度為自變量,_____的長度為因變量;
②設(shè),當(dāng)點P在線段上運動時,點E總在線段上,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中學(xué)生騎電動車上學(xué)的現(xiàn)象越來越受到社會的關(guān)注.為此某媒體記者小李隨機調(diào)查了城區(qū)若干名中學(xué)生家長對這種現(xiàn)象的態(tài)度(態(tài)度分為:A:無所謂;B:反對;C:贊成)并將調(diào)査結(jié)果繪制成圖①和圖②的統(tǒng)計圖(不完整)請根據(jù)圖中提供的信息,解答下列問題:
(1)此次抽樣調(diào)査中.共調(diào)査了 名中學(xué)生家長;
(2)將圖①補充完整;
(3)根據(jù)抽樣調(diào)查結(jié)果.請你估計我市城區(qū)80000名中學(xué)生家長中有多少名家長持反對態(tài)度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx-5(a,b是常數(shù),a0)的圖象與x軸交于點A(-1,0)和點B(5,0).動直線y=t(t為常數(shù))與拋物線交于不同的兩點P、Q(點P在Q的左側(cè)).
(1)求拋物線的解析式;
(2)動直線y=t與y軸交于點C,若CQ=3CP,求t的值;
(3)將拋物線y=ax2+bx-5在x軸下方的部分沿x軸翻折,若動直線y=t與翻折后的圖像交于點M、N,點M、N能否是線段PQ的三等分點?若能,求PQ的長度;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)接到一批產(chǎn)品的生產(chǎn)任務(wù),按要求必須在20天內(nèi)完成,已知每件產(chǎn)品的售價為65元,工人甲第x天生產(chǎn)的產(chǎn)品數(shù)量為y件,y與x滿足如下關(guān)系:y=.
(1)工人甲第幾天生產(chǎn)的產(chǎn)品數(shù)量為100件?
(2)設(shè)第x天(0≤x≤20)生產(chǎn)的產(chǎn)品成本為P元/件,P與x的函數(shù)圖象如圖,工人甲第x天創(chuàng)造的利潤為W元.
①求P與x的函數(shù)關(guān)系式;
②求W與x的函數(shù)關(guān)系式,并求出第幾天時,利潤最大,最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場新進一批商品,每個成本價25元,銷售一段時間發(fā)現(xiàn)銷售量y(個)與銷售單價x(元/個)之間成一次函數(shù)關(guān)系,如下表:
(1)求y與x之間的函數(shù)關(guān)系式;
(2)若該商品的銷售單價在45元~80元之間浮動,
①銷售單價定為多少元時,銷售利潤最大?此時銷售量為多少?
②商場想要在這段時間內(nèi)獲得4550元的銷售利潤,銷售單價應(yīng)定為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形中,相交于點O,過點B作交于點F,交于點M,過點D作交于點E,交于點N,連接.則下列結(jié)論:
①;②;
③;④當(dāng)時,四邊形是菱形.
其中,正確結(jié)論的個數(shù)是( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com