在平面直角坐標系中,把拋物線向上平移3個單位,再向左平移1個單位,則所得拋物線的解析式是   

解析試題分析:∵拋物線的頂點坐標為(0,1),
∴向上平移3個單位,再向左平移1個單位后的拋物線的頂點坐標為(﹣1,4)。
∴所得拋物線的解析式為。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:填空題

如圖,已知拋物線y=x2+bx+c經(jīng)過點(0,﹣3),請你確定一個b的值,使該拋物線與x軸的一個交點在(1,0)和(3,0)之間.你確定的b的值是  

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

如圖,以扇形OAB的頂點O為原點,半徑OB所在的直線為x軸,建立平面直角坐標系,點B的坐標為(2,0),若拋物線與扇形OAB的邊界總有兩個公共點,則實數(shù)的取值范圍是              

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

二次函數(shù)圖象的形狀與y=3x2相同,且它的頂點坐標是,該解析式為             ;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

二次函數(shù)的最小值是         

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

如圖,在邊長10cm為的正方形ABCD中,P為AB邊上任意一點(P不與A、B兩點重合),連結(jié)DP,過點P作PE⊥DP,垂足為P,交BC于點E,則BE的最大長度為       cm。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知拋物線y=x2﹣(k+2)x+和直線y=(k+1)x+(k+1)2
(1)求證:無論k取何實數(shù)值,拋物線總與x軸有兩個不同的交點;
(2)拋物線于x軸交于點A、B,直線與x軸交于點C,設(shè)A、B、C三點的橫坐標分別是x1、x2、x3,求x1•x2•x3的最大值;
(3)如果拋物線與x軸的交點A、B在原點的右邊,直線與x軸的交點C在原點的左邊,又拋物線、直線分別交y軸于點D、E,直線AD交直線CE于點G(如圖),且CA•GE=CG•AB,求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

在平面直角坐標系xOy中,直線y=kx(k為常數(shù))與拋物線交于A,B兩點,且A點在y軸左側(cè),P點的坐標為(0,﹣4),連接PA,PB.有以下說法:
①PO2=PA•PB;
②當k>0時,(PA+AO)(PB﹣BO)的值隨k的增大而增大;
③當時,BP2=BO•BA;
④△PAB面積的最小值為
其中正確的是     (寫出所有正確說法的序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

如圖,拋物線的頂點為P(-2,2)與y軸交于點A(0,3),若平移該拋物線使其頂P沿直線移動到點,點A的對應(yīng)點為,則拋物線上PA段掃過的區(qū)域(陰影部分)的面積為     .

查看答案和解析>>

同步練習(xí)冊答案