【題目】已知:二次函數(shù) 中的滿足下表:

0

1

2

3

3

0

0

m

(1) 觀察上表可求得的值為________

(2) 試求出這個二次函數(shù)的解析式;

(3) 若點An+2,y1),Bny2)在該拋物線上,且y1>y2,請直接寫出n的取值范圍.

【答案】(1)3;(2);(3)n>0

【解析】

(1)觀察已知表格中的對應(yīng)值可知:該函數(shù)圖象的開口向上,對稱軸是直線x=1,由拋物線的對稱性可知:x=3時的對應(yīng)函數(shù)值與x= -1時的對應(yīng)函數(shù)值相等,即可求得的值;

(2)把表中的三個點、(1,-1)、(2, 0)代入函數(shù)的解析式,得到關(guān)于a,b,c的方程組,即可求得解析式;
(3)根據(jù)函數(shù)的圖象開口方向,增減性即可確定.

(1)觀察已知表格中的對應(yīng)值可知:該函數(shù)圖象的開口向上,對稱軸是直線x=1,

由拋物線的對稱性可知:x=3時的對應(yīng)函數(shù)值與x= -1時的對應(yīng)函數(shù)值相等,即m的值為3;

(2)把、(1,-1)、(2, 0)代入二次函數(shù) ,得

,

解得:

這個二次函數(shù)的解析式為 ;

(3)∵該函數(shù)圖象的開口向上,對稱軸是直線x=1,

若點A(n+2,y1),B(n,y2在該拋物線上,且y1>y2,則

A(n+2,y1),B(n,y2在對稱軸兩側(cè)時,n+2-11-n,

解得:

A(n+2,y1),B(n,y2在對稱軸同側(cè)(含頂點)時,,

綜上可知:n的取值范圍是n.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點A1,A2,A3,…B1,B2,B3,…分別在直線y=x+bx軸上.OA1B1,B1A2B2,B2A3B3,…都是等腰直角三角形.如果點A1(1,1),那么點A2018的縱坐標(biāo)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是由7個同樣大小的正方體擺成的幾何體.將正方體①移走后,所得幾何體( 。

A. 主視圖改變,俯視圖改變 B. 左視圖改變,俯視圖改變

C. 俯視圖不變,左視圖改變 D. 主視圖不變,左視圖不變

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某綠色種植基地種植的農(nóng)產(chǎn)品喜獲豐收,此基地將該農(nóng)產(chǎn)品以每千克5元出售,這樣每天可售出1500千克,但由于同類農(nóng)產(chǎn)品的大量上市,該基地準(zhǔn)備降價促銷,經(jīng)調(diào)查發(fā)現(xiàn),在本地該農(nóng)產(chǎn)品若每降價元,每天可多售出100千克當(dāng)本地銷售單價為元時,銷售量為y千克.

請直接寫出yx的函數(shù)關(guān)系式;

求在本地當(dāng)銷售單價為多少時可以獲得最大銷售收入?最大銷售收入是多少?

若該農(nóng)產(chǎn)品不能在一周內(nèi)出售,將會因變質(zhì)而不能出售依此情況,基地將10000千克該農(nóng)產(chǎn)品運往外地銷售已知這10000千克農(nóng)產(chǎn)品運到了外地,并在當(dāng)天全部售完外地銷售這種農(nóng)產(chǎn)品的價格比在本地取得最大銷售收入時的單價還高,而在運輸過程中有損耗,這樣這一天的銷售收入為42000請計算出a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O的直徑DF與弦AB交于點E,CO外一點,CBAB,G是直線CD上一點,∠ADG=∠ABD

求證:ADCEDEDF

說明:(1)如果你經(jīng)歷反復(fù)探索,沒有找到解決問題的方法,請你把探索過程中的某種思路過程寫出來(要求至少寫3)

(2)在你經(jīng)歷說明(1)的過程之后,可以從下列、中選取一個補充或更換已知條件,完成你的證明.

CDB=∠CEB;

ADEC;

DEC=∠ADF,且∠CDE90°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把矩形ABCD沿AC折疊,使點D與點E重合,AEBC于點F,過點EEGCDAC于點G,交CF于點H,連接DG

(1)求證:四邊形ECDG是菱形;

(2)若DG=6,AG,求EH的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,排球運動員站在點O處練習(xí)發(fā)球,將球從O點正上方2mA處發(fā)出,把球看成點,其運行的高度y(m)與運行的水平距離x(m)滿足關(guān)系式y=a(xk)2+h.已知球與O點的水平距離為6m時,達(dá)到最高2.6m,球網(wǎng)與O點的水平距離為9m.高度為2.43m,球場的邊界距O點的水平距離為18m,則下列判斷正確的是( )

A. 球不會過網(wǎng) B. 球會過球網(wǎng)但不會出界

C. 球會過球網(wǎng)并會出界 D. 無法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一個不透明的口袋中裝有5個只有顏色不同的球,其中2個白球,3個黑球第一次隨機摸出一個球,不放回,再隨機摸出一個球.

求第一次摸到黑球的概率;

請用列表或畫樹狀圖等方法求兩次都摸到黑球的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場為方便顧客使用購物車,準(zhǔn)備將滾動電梯的坡面坡度由11.8改為12.4(如圖).如果改動后電梯的坡面長為13,求改動后電梯水平寬度增加部分BC的長.

查看答案和解析>>

同步練習(xí)冊答案