如下圖,△ABC內(nèi)接于⊙O,∠BAC的平分線交BC于D,交⊙O于E,若∠BAC=90°,則AE2=2S四邊形ABEC.
證明:∵AE平分∠BAC, 根據(jù)上述定理,有 AB·AC=AD·AE. 、 ∴∠BAC=90°, ∴∠EBC=∠CAE=∠BAE=45° 又∠BED=∠AEB, ∴△BED∽△AEB, ∴, ∴BE2=DE·AE. 、 、伲诘肁D·AE+DE·AE=AB·AC+BE2, AE(AD+DE)=AB·AC+BE2 AE2=AB·AC+BE2. ∵∠BEC=180°-∠BAC=90°,且BE=EC. ∴BE2=BE·EC=2S△BEC, 又AB·AC=2S△ABC, ∴AB·AC+BE2=2(S△ABC+S△BEC)=2S四邊形ABEC. ∴AE2=2S四邊形ABEC. |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:013
如下圖,△ABC內(nèi)接于⊙O,AB是直徑,BC=4,AC=3,CD平分∠ACB,則弦AD長為
[ ]
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:北京市第一六一中學(xué)2007-2008學(xué)年度初三第一學(xué)期期中測(cè)驗(yàn)、數(shù)學(xué)試卷 題型:047
如下圖,△ABC內(nèi)接于圓,AD⊥BC于D,弦BH⊥AC于E,交于AD于F
求證:FE=EH
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:初中數(shù)學(xué)解題思路與方法 題型:047
如下圖,△ABC內(nèi)接于⊙O,∠BAC的平分線交BC于D,交⊙O于E,若∠BAC=120°,則+=.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:寧夏自治區(qū)月考題 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com