如圖,⊙O是△ABC的內(nèi)切圓,與邊BC,CA,AB的切點(diǎn)分別為D,E,F(xiàn),若∠A=70°,則∠EDF=    度.
【答案】分析:根據(jù)切線的性質(zhì)定理以及四邊形的內(nèi)角和定理,得∠EOF=110°.再根據(jù)圓周角定理可得出∠EDF=55°.
解答:解:連接OE,OF,
∵∠A=70°,邊BC,CA,AB的切點(diǎn)分別為D,E,F(xiàn)
∴∠EOF=180°-70°=110°,
∴∠EDF=55°.
點(diǎn)評:此題綜合運(yùn)用了四邊形的內(nèi)角和定理、切線的性質(zhì)定理以及圓周角定理.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,⊙O是△ABC的外接圓,OD⊥AB于點(diǎn)D、交⊙O于點(diǎn)E,∠C=60°,如果⊙O的半徑為2,那么OD=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

24、如圖,AD是△ABC的高,且AD平分∠BAC,請指出∠B與∠C的關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•雅安)如圖,DE是△ABC的中位線,延長DE至F使EF=DE,連接CF,則S△CEF:S四邊形BCED的值為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•黔東南州)如圖,⊙O是△ABC的外接圓,圓心O在AB上,過點(diǎn)B作⊙O的切線交AC的延長線于點(diǎn)D.
(1)求證:△ABC∽△BDC.
(2)若AC=8,BC=6,求△BDC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,BD是∠ABC的平分線,DE⊥AB于E,S△ABC=90,AB=18,BC=12,求DE的長.

查看答案和解析>>

同步練習(xí)冊答案