【題目】汽車的“燃油效率”是指汽車每消耗1升汽油行駛的最大公里數(shù)(單位:km/L),如圖描述了甲、乙、丙三輛汽車在不同速度下的燃油效率情況,下列敘述正確的是(
A.當行駛速度為40km/h時,每消耗1升汽油,甲車能行駛20km
B.消耗1升汽油,丙車最多可行駛5km
C.當行駛速度為80km/h時,每消耗1升汽油,乙車和丙車行駛的最大公里數(shù)相同
D.當行駛速度為60km/h時,若行駛相同的路程,丙車消耗的汽油最少

【答案】C
【解析】解:A、當行駛速度為40km/h時,每消耗1升汽油,甲車能行駛15km,錯誤; B、消耗1升汽油,丙車最多可行駛大于5km,錯誤;
C、當行駛速度為80km/h時,每消耗1升汽油,乙車和丙車行駛的最大公里數(shù)相同,正確;
D、當行駛速度為60km/h時,若行駛相同的路程,甲車消耗的汽油最少,錯誤;
故選C
【考點精析】通過靈活運用函數(shù)的圖象,掌握函數(shù)的圖像是由直角坐標系中的一系列點組成;圖像上每一點坐標(x,y)代表了函數(shù)的一對對應值,他的橫坐標x表示自變量的某個值,縱坐標y表示與它對應的函數(shù)值即可以解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,一個點從數(shù)軸上的原點開始,先向右移動3個單位長度,再向左移動5個單位長度,可以看到終點表示的數(shù)是-2,已知點A,B是數(shù)軸上的點,請參照圖并思考,完成下列各題.

(1)如果點A表示數(shù)-3,將點A向右移動7個單位長度,那么終點B表示的數(shù)是_____,A,B兩點間的距離是_____;

(2)如果點A表示數(shù)3,將A點向左移動7個單位長度,再向右移動5個單位長度,那么終點表示的數(shù)是_____,A,B兩點間的距離為_____;

(3)如果點A表示數(shù)-4,將A點向右移動168個單位長度,再向左移動256個單位長度,那么終點B表示的數(shù)是_____,A、B兩點間的距離是_____;

(4)一般地,如果A點表示的數(shù)為m,將A點向右移動n個單位長度,再向左移動p個單位長度,那么請你猜想終點B表示什么數(shù)?A,B兩點間的距離為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AD為△ABC的中線,BE為△ABD的中線,

(1)若∠ABE=25°,∠BAD=50°,則∠BED的度數(shù)是 度.

(2)在△ADC中過點C作AD邊上的高CH.

(3)若△ABC的面積為60,BD=5,求點E到BC邊的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,M,N分別是CDBC的中點,且AMCDANBC。

(1)求證:∠BAD=2MAN;

(2)連接BD,若∠MAN=70°,DBC=40°,求∠ADC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】周末小石去博物館參加綜合實踐活動,乘坐公共汽車0.5小時后想換乘另一輛公共汽車,他等候一段時間后改為利用手機掃碼騎行摩拜單車前往.已知小石離家的路程s(單位:千米)與時間t(單位:小時)的函數(shù)關系的圖象大致如圖.則小石騎行摩拜單車的平均速度為(
A.30千米/小時
B.18千米/小時
C.15千米/小時
D.9千米/小時

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知:在△ABC中,AC=BC=4,∠ACB=120°,將一塊足夠大的直角三角尺PMN(∠M=90°,∠MPN=30°)按如圖放置,頂點P在線段AB上滑動,三角尺的直角邊PM始終經(jīng)過點C,并且與CB的夾角∠PCB=α,斜邊PNAC于點D.

(1)當PN∥BC時,判斷△ACP的形狀,并說明理由;

(2)點P在滑動時,當AP長為多少時,△ADP△BPC全等,為什么?

(3)點P在滑動時,△PCD的形狀可以是等腰三角形嗎?若可以,請求出夾角α的大小;若不可以,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,把直角三角形紙片沿過頂點B的直線(BECAE)折疊,直角頂點C落在斜邊AB上,如果折疊后得等腰△EBA,那么結論中:①∠A=30°;②點CAB的中點重合;③點EAB的距離等于CE的長,正確的個數(shù)是(  )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,拋物線y=ax2﹣4ax+4a﹣3(a≠0)的頂點為A.
(1)求頂點A的坐標;
(2)過點(0,5)且平行于x軸的直線l,與拋物線y=ax2﹣4ax+4a﹣3(a≠0)交于B,C兩點. ①當a=2時,求線段BC的長;
②當線段BC的長不小于6時,直接寫出a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,∠BAC=90度,AB=AC,BD是∠ABC的平分線,BD的延長線垂直于過C點的直線于E,直線CEBA的延長線于F.求證:BD=2CE

查看答案和解析>>

同步練習冊答案