【題目】如圖,是的直徑,是的切線,連接交于E,過點A作于F,交于D,連接,.
(1)求證:;
(2)若,,求的長.
科目:初中數學 來源: 題型:
【題目】拋物線的頂點為A,拋物線的頂點為B,其中m≠﹣2,拋物線與相交于點P.
(1)當m=﹣3時,在所給的平面直角坐標系中畫出C1,C2的圖象;
(2)已知點C(﹣2,1),求證:點A,B,C三點共線;
(3)設點P的縱坐標為q,求q的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小明同學利用寒假30天時間販賣草莓,了解到某品種草莓成本為10元/千克,在第天的銷售量與銷售單價如下(每天內單價和銷售量保持一致):
銷售量(千克) | |
銷售單價(元/千克) | 當時, |
當時, |
設第天的利潤元.
(1)請計算第幾天該品種草莓的銷售單價為25元/千克?
(2)這30天中,該同學第幾天獲得的利潤最大?最大利潤是多少?注:利潤=(售價-成本)×銷售量
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知一次函數的圖象與x軸相交于點A反比例函數相交于兩點.
(1)利用圖中條件,求反比例函數和一次函數的解析式;
(2)連接OB,OC,求的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖直線與x軸、y軸分別交于點A,B,C是的中點,點D在直線上,以為直徑的圓與直線的另一交點為E,交y軸于點F,G,已知,,則的長是______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知AB是半圓O的直徑,M,N是半圓上不與A,B重合的兩點,且點N在上.
(1)如圖1,MA=6,MB=8,∠NOB=60°,求NB的長;
(2)如圖2,過點M作MC⊥AB于點C,P是MN的中點,連接MB,NA,PC,試探究∠MCP,∠NAB,∠MBA之間的數量關系,并證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀下列材料,并完成相應的任務.
古希臘的幾何學家海倫在他的著作《度量論》一書中給出了利用三角形三邊之長求面積的公式﹣﹣﹣﹣海倫公式S=(其中a,b,c是三角形的三邊長,,S為三角形的面積),并給出了證明
例如:在△ABC中,a=3,b=4,c=5,那么它的面積可以這樣計算:
∵a=3,b=4,c=5
∴=6
∴S===6
事實上,對于已知三角形的三邊長求三角形面積的問題,還可用我國南宋時期數學家秦九韶提出的秦九韶公式等方法解決.
根據上述材料,解答下列問題:
如圖,在△ABC中,BC=7,AC=8,AB=9
(1)用海倫公式求△ABC的面積;
(2)如圖,AD、BE為△ABC的兩條角平分線,它們的交點為I,求△ABI的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某企業(yè)為響應國家教育扶貧的號召,決定對某鄉(xiāng)鎮(zhèn)全體貧困初、高中學生進行資助,初中學生每月資助200元,高中學生每月資助300元.已知該鄉(xiāng)受資助的初中學生人數是受資助的高中學生人數的2倍,且該企業(yè)在2018年下半年7﹣12月這6個月資助學生共支出10.5萬元.
(1)問該鄉(xiāng)鎮(zhèn)分別有多少名初中學生和高中學生獲得了資助?
(2)2018年7﹣12月期間,受資助的初、高中學生中,分別有30%和40%的學生被評為優(yōu)秀學生,從而獲得了該鄉(xiāng)鎮(zhèn)政府的公開表揚.同時,提供資助的企業(yè)為了激發(fā)更多受資助學生的進取心和學習熱情,決定對2019年上半年1﹣6月被評為優(yōu)秀學生的初中學生每人每月增加a%的資助,對被評為優(yōu)秀學生的高中學生每人每月增加2a%的資助.在此獎勵政策的鼓勵下,2019年1﹣6月被評為優(yōu)秀學生的初、高中學生分別比2018年7﹣12月的人數增加了3a%、a%.這樣,2019年上半年評為優(yōu)秀學生的初、高中學生所獲得的資助總金額一個月就達到了10800元,求a的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD中,∠BAD=∠BCD=90°,AC平分∠BAD,AC=7,AD=3,將四邊形ABCD沿直線l無滑動翻滾一周,則對角線BD的中點O經過的路徑長度為_____.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com