【題目】如圖,已知∠MON=30°,點(diǎn)A1 , A2 , A3 , …在射線ON上,點(diǎn)B1 , B2 , B3 , …在射線OM上,△A1B1A2 , △A2B2A3 , △A3B3A4 , …均為等邊三角形,若OA1=2,則△A5B5A6的邊長(zhǎng)為(
A.8
B.16
C.24
D.32

【答案】D
【解析】解:如圖所示:∵△A1B1A2是等邊三角形, ∴A1B1=A2B1 , ∠3=∠4=∠12=60°,
∴∠2=120°,
∵∠MON=30°,
∴∠1=180°﹣120°﹣30°=30°,
又∵∠3=60°,
∴∠5=180°﹣60°﹣30°=90°,
∵∠MON=∠1=30°,
∴OA1=A1B1=2,
∴A2B1=2,
∵△A2B2A3、△A3B3A4是等邊三角形,
∴∠11=∠10=60°,∠13=60°,
∵∠4=∠12=60°,
∴A1B1∥A2B2∥A3B3 , B1A2∥B2A3 ,
∴∠1=∠6=∠7=30°,∠5=∠8=90°,
∴A2B2=2B1A2 , B3A3=2B2A3
∴A3B3=4B1A2=8,
A4B4=8B1A2=16,
A5B5=16B1A2=32;
故選:D.

根據(jù)等腰三角形的性質(zhì)以及平行線的性質(zhì)得出A1B1∥A2B2∥A3B3 , 以及A2B2=2B1A2 , 得出A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2得出答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一組數(shù)據(jù)3,4x,68的平均數(shù)是5,則這組數(shù)據(jù)的眾數(shù)是(

A.3B.4C.6D.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一棵大樹(shù)在一次強(qiáng)臺(tái)風(fēng)中折斷倒下,未折斷樹(shù)桿AB與地面仍保持垂直的關(guān)系,而折斷部分AC與未折斷樹(shù)桿AB形成53°的夾角.樹(shù)桿AB旁有一座與地面垂直的鐵塔DE,測(cè)得BE=6米,塔高DE=9米.在某一時(shí)刻的太陽(yáng)照射下,未折斷樹(shù)桿AB落在地面的影子FB長(zhǎng)為4米,且點(diǎn)F、B、C、E在同一條直線上,點(diǎn)F、A、D也在同一條直線上.求這棵大樹(shù)沒(méi)有折斷前的高度.(參考數(shù)據(jù):sin53°≈0.8,cos53°≈0.6,tan53°≈1.33)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)y=kx2-x-2經(jīng)過(guò)點(diǎn)(1,5),則k=_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】李阿姨存入銀行2000元,定期一年,到期后扣除20%的利息稅后得到本利和為2048元,則該種儲(chǔ)蓄的年利率為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列調(diào)查中,采用的調(diào)查方式不適宜的是(

A. 了解我市中學(xué)生的節(jié)水意識(shí)采取抽樣調(diào)查的方式

B. 為了調(diào)查一個(gè)省的環(huán)境污染情況,調(diào)查該省的省會(huì)城市

C. 了解觀眾對(duì)一部電影的評(píng)價(jià)情況,調(diào)查座號(hào)為奇數(shù)號(hào)的現(xiàn)眾

D. 了解飛行員視力的達(dá)標(biāo)率采取普查方式

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖
(1)如圖(1)已知:在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過(guò)點(diǎn)A,BD⊥直線m,CE⊥直線 m,垂足分別為點(diǎn)D、E.證明:DE=BD+CE.
(2)如圖(2),將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點(diǎn)都在直線m上,并且有∠BDA=∠AEC=∠BAC=120°.請(qǐng)問(wèn)結(jié)論DE=BD+CE是否成立?如成立,請(qǐng)你給出證明;若不成立,請(qǐng)說(shuō)明理由.
(3)拓展與應(yīng)用:如圖(3),D、E是D、A、E三點(diǎn)所在直線m上的兩動(dòng)點(diǎn)(D、A、E三點(diǎn)互不重合),點(diǎn)F為∠BAC平分線上的一點(diǎn),且△ABF和△ACF均為等邊三角形,連接BD、CE,若∠BDA=∠AEC=∠BAC,試證明FD=FE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是菱形,對(duì)角線AC、BD相交于點(diǎn)O,DH⊥AB于H, 連接OH,求證:∠DHO=∠DCO.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a、b互為相反數(shù),c、d互為倒數(shù),則 2(a+b)﹣cd=

查看答案和解析>>

同步練習(xí)冊(cè)答案