【題目】如圖,將△ABC沿角平分線BD所在直線翻折,頂點(diǎn)A恰好落在邊BC的中點(diǎn)E處,AE=BD,那么tan∠ABD= .
【答案】
【解析】解:如圖,作CM⊥AE交AE的延長(zhǎng)線于M,作DN⊥AB于N,DF⊥BC于F,AE與BD交于點(diǎn)K,設(shè)DK=a.
∵AB=BE=EC,
∴BC=2AB,
∵DB平分∠ABC,
∴DN=DF,
∵ = = ,
∴ = , = ,
∵DB⊥AM,CM⊥AM,
∴DK∥CM,
∴ = = ,∠KBE=∠MCE,
∴CM=3a,
在△BKE和△CME中,
,
∴△BKE≌△CME,
∴BK=CM=3a,
∴BD=AE=4a,
∴AK=KE=2a,
∴tan∠ABD= = = .
所以答案是 .
補(bǔ)充方法:取DC的中點(diǎn)P,連接EP,利用三角形的中位線,可以證明BK=3DK,根據(jù)AK= BD,
根據(jù)tan∠ABD= = .
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解翻折變換(折疊問(wèn)題)的相關(guān)知識(shí),掌握折疊是一種對(duì)稱變換,它屬于軸對(duì)稱,對(duì)稱軸是對(duì)應(yīng)點(diǎn)的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對(duì)應(yīng)邊和角相等.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,C,D是以線段AB為直徑的⊙O上兩點(diǎn),若CA=CD,且∠ACD=30°,則∠CAB=( )
A.15°
B.20°
C.25°
D.30°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)不透明的袋子中裝有紅、白兩種顏色的小球,這些球除顏色外都相同,其中紅球有2個(gè),若從中隨機(jī)摸出一個(gè)球,這個(gè)球是白球的概率為 .
(1)求袋子中白球的個(gè)數(shù);(請(qǐng)通過(guò)列式或列方程解答)
(2)隨機(jī)摸出一個(gè)球后,放回并攪勻,再隨機(jī)摸出一個(gè)球,求兩次都摸到相同顏色的小球的概率.(請(qǐng)結(jié)合樹狀圖或列表解答)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲,乙兩輛汽車先后從A地出發(fā)到B地,甲車出發(fā)1小時(shí)后,乙車才出發(fā),如圖所示的l1和l2表示甲,乙兩車相對(duì)于出發(fā)地的距離y(km)與追趕時(shí)間x(h)之間的關(guān)系:
(1)哪條線表示乙車離出發(fā)地的距離y與追趕時(shí)間x之間的關(guān)系?
(2)甲,乙兩車的速度分別是多少?
(3)試分別確定甲,乙兩車相對(duì)于出發(fā)地的距離y(km)與追趕時(shí)間x(h)之間的關(guān)系式;
(4)乙車能在1.5小時(shí)內(nèi)追上甲車嗎?若能,說(shuō)明理由;若不能,求乙車出發(fā)幾小時(shí)才能追上甲?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一個(gè)長(zhǎng)5m的梯子AB,斜靠在一豎直的墻AO上,這時(shí)AO的距離為4m,如果梯子的頂端A沿墻下滑1m至C點(diǎn).
(1)求梯子底端B外移距離BD的長(zhǎng)度;
(2)猜想CE與BE的大小關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)不透明的口袋中裝有紅、白兩種顏色的小球(除顏色外其余都相同),其中紅球3個(gè),白球1個(gè).
(1)求任意摸出一球是白球的概率;
(2)甲同學(xué)先隨機(jī)摸出一個(gè)小球(不放回),再隨機(jī)摸出一個(gè)小球,請(qǐng)用畫樹狀圖或列表的方法求兩次摸出都是紅球的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABE中,∠A=105°,AE的垂直平分線MN交BE于點(diǎn)C,且AB+BC=BE,則∠B的度數(shù)是( )
A. 45° B. 60° C. 50° D. 55°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在△OAB中,∠OAB=90°,∠AOB=30°,OB=8.以O(shè)B為邊,在△OAB外作等邊△OBC,D是OB的中點(diǎn),連接AD并延長(zhǎng)交OC于E.
(1)求證:四邊形ABCE是平行四邊形;
(2)如圖2,將圖1中的四邊形ABCO折疊,使點(diǎn)C與點(diǎn)A重合,折痕為FG,求OG的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用22米長(zhǎng)的籬笆和6米長(zhǎng)的圍墻圍成一個(gè)矩形雞舍.
(1)爸爸的方案是:一面是墻,另外三面是籬笆,求爸爸圍成的雞舍面積最大是多少?
(2)小明的方案是:把有墻的一面用籬笆加長(zhǎng)作為一邊,另外三面也是籬笆,要使圍成的雞舍面積最大,求有墻的一面應(yīng)該再加長(zhǎng)幾米長(zhǎng)的籬笆?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com