(2009•泰安)如圖,△ABC是直角三角形,∠ACB=90°,CD⊥AB于D,E是AC的中點,ED的延長線與CB的延長線交于點F.
(1)求證:FD2=FB•FC;
(2)若G是BC的中點,連接GD,GD與EF垂直嗎?并說明理由.

【答案】分析:(1)要求證:FD2=FB•FC,只要證明△FBD∽△FDC,從而轉(zhuǎn)化為證明∠FDC=∠FBD;
(2)要證DG⊥EF,只要證明∠5+∠1=90°,轉(zhuǎn)化為證明∴∠3=∠4即可.
解答:(1)證明:∵E是Rt△ACD斜邊中點,
∴DE=EA,
∴∠A=∠2,(1分)
∵∠1=∠2,
∴∠1=∠A,(2分)
∵∠FDC=∠CDB+∠1=90°+∠1,∠FBD=∠ACB+∠A=90°+∠A,
∴∠FDC=∠FBD,
∵∠F是公共角,
∴△FBD∽△FDC.(4分)

∴FD2=FB•FC.(6分)

(2)GD⊥EF.(7分)
理由如下:
∵DG是Rt△CDB斜邊上的中線,
∴DG=GC.
∴∠3=∠4.
由(1)得∵△FBD∽△FDC,
∴∠4=∠1,
∴∠3=∠1.(9分)
∵∠3+∠5=90°,
∴∠5+∠1=90°.
∴DG⊥EF.(10分)
點評:證明線段的積相等可以轉(zhuǎn)化為證明三角形相似,證明兩直線垂直轉(zhuǎn)化為證明形成的角是直角.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2011年河南省鄭州市新密市興華公學(xué)九年級(下)第一次月考數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•泰安)如圖,△OAB是邊長為2的等邊三角形,過點A的直線+m與x軸交于點E.
(1)求點E的坐標(biāo);
(2)求過A、O、E三點的拋物線解析式;
(3)若點P是(2)中求出的拋物線AE段上一動點(不與A、E重合),設(shè)四邊形OAPE的面積為S,求S的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年全國中考數(shù)學(xué)試題匯編《反比例函數(shù)》(01)(解析版) 題型:選擇題

(2009•泰安)如圖,雙曲線y=(k>0)經(jīng)過矩形OABC的邊BC的中點E,交AB于點D.若梯形ODBC的面積為3,則雙曲線的解析式為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(02)(解析版) 題型:選擇題

(2009•泰安)如圖,雙曲線y=(k>0)經(jīng)過矩形OABC的邊BC的中點E,交AB于點D.若梯形ODBC的面積為3,則雙曲線的解析式為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年山東省泰安市初中學(xué)業(yè)考試數(shù)學(xué)樣卷(解析版) 題型:選擇題

(2009•泰安)如圖,雙曲線y=(k>0)經(jīng)過矩形OABC的邊BC的中點E,交AB于點D.若梯形ODBC的面積為3,則雙曲線的解析式為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年福建省龍巖市上杭三中九年級(下)第一次月考數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•泰安)如圖,△OAB是邊長為2的等邊三角形,過點A的直線+m與x軸交于點E.
(1)求點E的坐標(biāo);
(2)求過A、O、E三點的拋物線解析式;
(3)若點P是(2)中求出的拋物線AE段上一動點(不與A、E重合),設(shè)四邊形OAPE的面積為S,求S的最大值.

查看答案和解析>>

同步練習(xí)冊答案