精英家教網(wǎng)邊長(zhǎng)為4的正方形ABCD中,點(diǎn)O是對(duì)角線AC的中點(diǎn),P是對(duì)角線AC上一動(dòng)點(diǎn),過(guò)點(diǎn)P作PF⊥CD于點(diǎn)F,作PE⊥PB交直線CD于點(diǎn)E,設(shè)PA=x,S△PCE=y,
(1)求證:DF=EF;
(2)當(dāng)點(diǎn)P在線段AO上時(shí),求y關(guān)于x的函數(shù)關(guān)系式及自變量x的取值范圍;
(3)在點(diǎn)P的運(yùn)動(dòng)過(guò)程中,△PEC能否為等腰三角形?如果能夠,請(qǐng)直接寫(xiě)出PA的長(zhǎng);如果不能,請(qǐng)簡(jiǎn)單說(shuō)明理由.
分析:(1)延長(zhǎng)FP交AB于G,根據(jù)正方形的性質(zhì)和已知推出矩形AGFD,得到DF=AG,證∠GBP=∠FPE,推出Rt△GBP≌Rt△FPE,推出EF=PG,根據(jù)等腰三角形的性質(zhì)求出即可;
(2)根據(jù)勾股定理求出AG=DF=EF=
2
2
x,求出CE、PF,根據(jù)三角形的面積求出即可;
(3)根據(jù)等腰三角形的性質(zhì)和勾股定理求出即可.
解答:精英家教網(wǎng)(1)證明:延長(zhǎng)FP交AB于G,
∵四邊形ABCD是正方形,
∴∠BAD=∠D=90°(正方形的四個(gè)內(nèi)角都是直角)
∵PF⊥CD,
∴∠DFG=90°,
∴四邊形AGFD是矩形(有三個(gè)角是直角的四邊形是矩形),
∴DF=AG,∠AGF=90°,
∵AC是正方形ABCD的對(duì)角線,
∴∠BAC=45°,
∴△AGP是等腰直角三角形,即AG=GP,
∴GP=DF,
同理CF=PF=BG,
∵∠GPB+∠FPE=90°,∠GPB+∠GBP=90°,
∴∠GBP=∠FPE,
在Rt△GBP和Rt△FPE中
∠GBP=∠FPE
BG=PF
∠BGP=∠PFE
,
∴Rt△GBP≌Rt△FPE(ASA),
∴GP=EF,
即DF=EF.

(2)解:在Rt△AGP中,∵AP=x,精英家教網(wǎng)
∴AG=GP=
2
2
x,
DF=EF=
2
2
x,
即DE=
2
x,
∴CE=4-
2
x,
∵PF=4-
2
2
x,
∴y=
1
2
(4-
2
x)(4-
2
2
x)=
1
2
x2-3
2
x+8,
定義域:0≤x≤2
2
,
答:y關(guān)于x的函數(shù)關(guān)系式是y=
1
2
x2-3
2
x+8,自變量x的取值范圍是0≤x≤2
2


(3)解:能夠,
∵∠CEP≥90°,
若△PEC為等腰三角形,只能是∠CPE=∠ECP=45°,精英家教網(wǎng)
則PE⊥CE,
∵PE⊥PB,
∴BP∥CD,
∴BP∥BA
于是P與AB共線,又P在AC上,
∴A與P共點(diǎn),
此時(shí),PA=0;
精英家教網(wǎng)
作PE⊥PB交直線CD于點(diǎn)E,
當(dāng)PA=4時(shí),E在DC的延長(zhǎng)線上,PC=CE,
△PEC為等腰三角形,
此時(shí)PA=4.
點(diǎn)評(píng):本題主要考查對(duì)等腰三角形的性質(zhì)和判定,全等三角形的性質(zhì)和判定,正方形的性質(zhì),勾股定理,三角形的面積,矩形的性質(zhì)和判定等知識(shí)點(diǎn)的連接和掌握,綜合運(yùn)用這些性質(zhì)進(jìn)行推理是解此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)E是邊長(zhǎng)為2的正方形ABCD的AB邊的延長(zhǎng)線上一點(diǎn),P為邊AB上的一個(gè)動(dòng)點(diǎn)(不與A、B重合),直線PF⊥PD,∠EBC的平分線與PF交于點(diǎn)Q.
(1)如圖1,當(dāng)P為AB的中點(diǎn)時(shí),求PD的長(zhǎng),并比較PD與PQ長(zhǎng)的大;
(2)如圖2,在點(diǎn)P運(yùn)動(dòng)過(guò)程中,PD與PQ長(zhǎng)的大小關(guān)系會(huì)發(fā)生變化嗎?為什么?
(3)設(shè)PB=x,△BPQ和△PAD的面積分別是S1、S2,又y=
S2S1
,試求y與x之間的函數(shù)關(guān)系式,并判斷y隨PB的變化而怎樣變化?精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

5、如圖所示,在邊長(zhǎng)為a的正方形中挖去一個(gè)邊長(zhǎng)為b的小正方形(a>b),再把剩余的部分剪拼成一個(gè)矩形,通過(guò)計(jì)算圖形(陰影部分的面積),驗(yàn)證了一個(gè)等式是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

(2011•石家莊二模)閱讀材料:
我們將能完全覆蓋平面圖形的最小圓稱為該平面圖形的最小覆蓋圓.
例如:線段AB的最小覆蓋圓就是以線段AB為直徑的圓.
操作探究:
(1)如圖1:已知線段AB與其外一點(diǎn)C,作過(guò)A、B、C三點(diǎn)的最小覆蓋圓;(不寫(xiě)作法,保留作圖痕跡)
(2)邊長(zhǎng)為1cm的正方形的最小覆蓋圓的半徑是
2
2
2
2
cm;
如圖2,邊長(zhǎng)為1cm的兩個(gè)正方形并列在一起,則其最小覆蓋圓的半徑是
5
2
5
2
cm;
如圖3,半徑為1cm的兩個(gè)圓外切,則其最小覆蓋圓的半徑是
2
2
cm.
聯(lián)想拓展:
⊙O1的半徑為8,⊙O2,⊙O3的半徑均為5.
(1)當(dāng)⊙O1、⊙O2、⊙O3兩兩外切時(shí)(如圖4),則其最小覆蓋圓的半徑是
40
3
40
3
;
(2)當(dāng)⊙O1、⊙O2、⊙O3兩兩相切時(shí),(1)中的結(jié)論還成立嗎?如果不成立,則其最小覆蓋圓的半徑是
13
13
,并作出示意圖.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知E是邊長(zhǎng)為12的正方形的邊AB上一點(diǎn),且AE=5,P是對(duì)角線AC上任意一點(diǎn),則PE+PB的最小值是
13
13

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,兩個(gè)長(zhǎng)方形的一部分重疊在一起,重疊部分是邊長(zhǎng)為3的正方形,則陰影部分的面積是
ab+cd-18
ab+cd-18

查看答案和解析>>

同步練習(xí)冊(cè)答案