【題目】如圖,在平行四邊形 ABCD中,對角線 AC BD交于點O,

(1)AO=BD,求證:四邊形 ABCD為矩形;

(2) AE BD于點E,CF BD于點F,求證:AE CF

【答案】1)見詳解;(2)見詳解.

【解析】

1)根據(jù)AO=BD可得AC=BD即可得到四邊形 ABCD為矩形;

(2)此問可根據(jù)三角形全等證明即可.

1)在平行四邊形 ABCD中,

AO=OC=AC,BO=OD=BD;

AO=BD

AO=OC=BO=OD;

AC=BD,

∴四邊形 ABCD為矩形;

(2)由(1)知:AO=OC,

AE BDCF BD,

∠AEO=∠CFO;

∵∠AOE=∠COF;

∴△AOE△COF,

∴AE=CF.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,邊AB的垂直平分線交AD于點E,交CB的延長線于點F,連接AF,BE.

(1)求證:AGE≌△BGF;

(2)試判斷四邊形AFBE的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】分)如圖,管中放置著三根同樣的繩子 ,

)小明從這三根繩子中隨機(jī)選一根,恰好選中繩子的概率是__________

)小明先從左端, 三個繩頭中隨機(jī)選兩個打一個結(jié),再從右端, , 三個繩頭中隨機(jī)選兩個打一個結(jié),求這三根繩子能連結(jié)成一根長繩的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形ABCD中,AB=8,BC=6,將矩形按圖示方式進(jìn)行分割,其中正方形AEFG與正方形JKCI全等,矩形GHID與矩形EBKL全等.

1)當(dāng)矩形LJHF的面積為時,求AG的長;

2)當(dāng)AG為何值時,矩形LJHF的面積最大.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有三面小旗,分別為紅、黃、藍(lán)三種顏色.

.把三面小旗從左到右排列,紅色小旗在最左端的概率是多少?

.黃色小旗排在藍(lán)色小旗前的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于的一元二次方程是整數(shù)).

.求證:方程有兩個不相等的實數(shù)根;

.若方程的兩個實數(shù)根分別為(其中),設(shè),判斷是否為變量的函數(shù)?如果是,請寫出函數(shù)表達(dá)式;若不是,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,為了將貨物裝入大型的集裝箱卡車,需要利用傳送帶AB將貨物從地面?zhèn)魉偷礁?/span>1.8米(即BD=1.8米)的操作平臺BC上.已知傳送帶AB與地面所成斜坡的坡角∠BAD=37°

1)求傳送帶AB的長度;

2)因?qū)嶋H需要,現(xiàn)在操作平臺和傳送帶進(jìn)行改造,如圖中虛線所示,操作平臺加高0.2米(即BF=0.2米),傳送帶與地面所成斜坡的坡度i=12.求改造后傳送帶EF的長度.(精確到0.1米)(參考數(shù)值:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75, ≈1.41, ≈2.24

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了加強(qiáng)學(xué)生課外閱讀,開闊視野,某校開展了書香校園,誦讀經(jīng)典活動,學(xué)習(xí)隨機(jī)抽查了部分學(xué)生,對他們每天的課外閱讀時間進(jìn)行調(diào)查,并將調(diào)查統(tǒng)計的結(jié)果分為四類:每天誦讀時間t≤20分鐘的學(xué)生記為A類,20分鐘<t≤40分鐘記為B類,40分鐘<t≤60分鐘記為C類,t60分鐘記為D類,收集的數(shù)據(jù)繪制如下兩幅不完整的統(tǒng)計圖.請根據(jù)圖中提供的信息,解答下列問題:

1)這次共抽取了   名學(xué)生進(jìn)行調(diào)查統(tǒng)計,扇形統(tǒng)計圖中D類所對應(yīng)的扇形圓心角大小為   

2)將條形統(tǒng)計圖補(bǔ)充完整;

3)如果該校共有2000名學(xué)生,請你估計該校C類學(xué)生約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用代入法解方程組較簡單的解法步驟是:先把方程___變形為__________,再代入方程__________,求得__________的值,然后再求___________的值.

查看答案和解析>>

同步練習(xí)冊答案