【題目】如圖,在 RtABC 中,∠C90°,AP′⊥ABBP′交 AC 于點(diǎn) P, APAP′.

(1)求證:∠CBP=∠ABP

(2)過點(diǎn) P′作 PEAC 于點(diǎn) E,求證:AECP

【答案】(1)見解析;(2)見解析.

【解析】

(1)根據(jù)等腰三角形底角相等和∠CBP+∠BPC=90°,∠ABP+∠AP

P=90°即可解題.

(2)過點(diǎn) P PDAB D,可證△APD≌△PAE,可得 AECP

解:(1)∵APAP′,

∴∠APP′=∠APP,

∵∠C90°,AP′⊥AB

∴∠CBP+BPC90°,∠ABP+APP90°,

又∵∠BPC=∠APP′(對頂角相等),

∴∠CBP=∠A BP;

2)如圖,過點(diǎn) P PDAB D

∵∠CBP=∠ABP,∠C90°,

CPDP,

PEAC

∴∠EAP+APE90°, 又∵∠PAD+EAP′=90°,

∴∠PAD=∠APE,

在△APD 和△PAE 中,

,

∴△APD≌△PAEAAS),

AEDP,

AECP

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在ABC中,AB=ACBDACD,CEABE,BD,CE相交于F.

求證:AF平分∠BAC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy,直線y=x﹣1與y軸交于點(diǎn)A,與雙曲線y= 交于點(diǎn)B(m,2).

(1)求點(diǎn)B的坐標(biāo)及k的值;
(2)將直線AB平移,使它與x軸交于點(diǎn)C,與y軸交于點(diǎn)D,若△ABC的面積為6,求直線CD的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖2,AB=AC,BEACE,CFABF,BE,CF交于D,則以下結(jié)論:①△ABE≌△ACF;②△BDF≌△CDE;③點(diǎn)D在∠BAC的平分線上.正確的是( 。

A. B. C. ①② D. ①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】三角板是學(xué)習(xí)數(shù)學(xué)的重要工具,將一副三角板中的兩塊直角三角板的直角頂點(diǎn)按如圖方式疊放在一起,當(dāng)且點(diǎn)在直線的上方時(shí),解決下列問題:(友情提示:,

1)①若,則的度數(shù)為  

②若,則的度數(shù)為  ;

2)由(1)猜想的數(shù)量關(guān)系,并說明理由.

3)這兩塊三角板是否存在一組邊互相平行?若存在,請直接寫出的角度所有可能的值(不必說明理由);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,G BC 的中點(diǎn),且 DGBC,DEAB E,DFAC F, BECF

(1)求證:AD 是∠BAC 的平分線;

(2)如果 AB8AC6,求 AE 的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)操作發(fā)現(xiàn):如圖①,D是等邊ABC的邊BA上一動(dòng)點(diǎn)(點(diǎn)D與點(diǎn)B不重合),連接DC,以DC為邊在BC上方作等邊DCF,連接AF,你能發(fā)現(xiàn)AFBD之間的數(shù)量關(guān)系嗎?并證明你發(fā)現(xiàn)的結(jié)論;

(2)類比猜想:如圖②,當(dāng)動(dòng)點(diǎn)D運(yùn)動(dòng)至等邊ABCBA的延長線時(shí),其他作法與(1)相同,猜想AFBD(1)中的結(jié)論是否仍然成立?

(3)深入探究:Ⅰ.如圖③,當(dāng)動(dòng)點(diǎn)D在等邊ABCBA上運(yùn)動(dòng)時(shí)(點(diǎn)DB不重合),連接DC,以DC為邊在BC上方和下方分別作等邊DCF和等邊DCF′,連接AF,BF′,探究AF,BF′AB有何數(shù)量關(guān)系?并證明你的探究的結(jié)論;Ⅱ.如圖④,當(dāng)動(dòng)點(diǎn)D在等邊ABC的邊BA的延長線上運(yùn)動(dòng)時(shí),其他作法與圖③相同,Ⅰ中的結(jié)論是否成立?若不成立,是否有新的結(jié)論?并證明你得出的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司到果園基地購買某種優(yōu)質(zhì)水果,慰問醫(yī)務(wù)工作者,果園基地對購買量在3000千克以上(含3000千克)的有兩種銷售方案,甲方案:每千克9元,由基地送貨上門.乙方案:每千克8元,由顧客自己租車運(yùn)回,已知該公司租車從基地到公司的運(yùn)輸費(fèi)為5000元.

(1)分別寫出該公司兩種購買方案的付款y(元)與所購買的水果質(zhì)量x(千克)之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.

(2)依據(jù)購買量判斷,選擇哪種購買方案付款最少?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O的半徑為 ,BD是⊙O的切線,D為切點(diǎn),過圓上一點(diǎn)C作BD的垂線,垂足為B,BC=3,點(diǎn)A是優(yōu)弧CD的中點(diǎn),則sin∠A的值是(
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案