【題目】如圖,在Rt△ABC中,BC2,∠BAC30°,斜邊AB的兩個端點分別在相互垂直的射線OM,ON上滑動,下列結(jié)論: ①若C,O兩點關于AB對稱,則OA;②C,O兩點距離的最大值為4;③若AB平分CO,則AB⊥CO;④斜邊AB的中點D運動路徑的長為.

其中正確的是( )

A. ①② B. ①②③ C. ①③④ D. ①②④

【答案】D

【解析】分析:①先根據(jù)直角三角形30°的性質(zhì)和勾股定理分別求ACAB,由對稱的性質(zhì)可知:ABOC的垂直平分線,所以
②當OC經(jīng)過AB的中點E時,OC最大,則C、O兩點距離的最大值為4;
③如圖2,當∠ABO=30°時,易證四邊形OACB是矩形,此時ABCO互相平分,但所夾銳角為60°,明顯不垂直,或者根據(jù)四點共圓可知:A、CB、O四點共圓,則AB為直徑,由垂徑定理相關推論:平分弦(不是直徑)的直徑垂直于這條弦,但當這條弦也是直徑時,即OC是直徑時,ABOC互相平分,但ABOC不一定垂直;
④如圖3,半徑為2,圓心角為90°,根據(jù)弧長公式進行計算即可.

詳解:在RtABC,

①若C.O兩點關于AB對稱,如圖1,

ABOC的垂直平分線,

所以①正確;

②如圖1,取AB的中點為E,連接OE、CE,

OC經(jīng)過點E時,OC最大,

C.O兩點距離的最大值為4;

所以②正確;

③如圖2,,

∴四邊形AOBC是矩形,

ABOC互相平分,

ABOC的夾角為不垂直,

所以③不正確;

④如圖3,斜邊AB的中點D運動路徑是:以O為圓心,2為半徑的圓周的

則:

所以④正確;

綜上所述,本題正確的有:①②④;

故選D.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,BE平分∠ABC,DEBC

1)判斷△DBE是什么三角形,并說明理由;

2)若FBE中點,∠ABE=30°,求∠BDF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點EBC的中點,ABBC,DCBC,AE平分BAD,下列結(jié)論:①AED=90°ADE=CDEDE=BEAD=AB+CD,四個結(jié)論中成立的是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中有一個3×3的正方形網(wǎng)格,其右下角格點(小正方形的頂點)A的坐標為(﹣1,1),左上角格點B的坐標為(﹣44),若分布在過定點(﹣10)的直線y=﹣kx+1)兩側(cè)的格點數(shù)相同,則k的取值可以是( 。

A.B.C.2D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用適當?shù)姆椒ń庀铝蟹匠?/span>

(1)x(2x﹣5)=4x﹣10

(2)2x2+5x+1=0

(3)x2+5x+7=3x+6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列四個圖案中,是軸對稱圖形的是(

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的分式方程①和一元二次方程②中,m為常數(shù),方程①的根為非負數(shù).

(1)求m的取值范圍;

(2)若方程②有兩個整數(shù)根x1、x2,且m為整數(shù),求方程②的整數(shù)根.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC的周長為19,點D,E在邊BC上,∠ABC的平分線垂直于AE,垂足為N,ACB的平分線垂直于AD,垂足為M,若BC=7,則MN的長度為( 。

A. B. 2 C. D. 3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公司銷售部有營銷人員15人,銷售部為了制定某種商品的月銷售定額,統(tǒng)計了這15人某月的銷售如下:

每人銷售件數(shù)

1800

510

250

210

150

120

人數(shù)

1

1

3

5

3

2

1)求這15位營銷人員該月銷售量的平均數(shù)、中位數(shù)和眾數(shù).

2)假設銷售部負責人把每位營銷員的月銷售額定為320件,你認為是否合理?為什么?如不合理,請你制定一個合理的銷售定額,并說明理由.

查看答案和解析>>

同步練習冊答案