【題目】閱讀與應(yīng)用:閱讀1:a、b為實(shí)數(shù),且a>0,b>0,因?yàn)?/span>,所以從而(當(dāng)a=b時(shí)取等號(hào)).

閱讀2:若函數(shù);(m>0,x>0,m為常數(shù)),由閱讀1結(jié)論可知:,所以當(dāng),即時(shí),函數(shù)的最小值為

閱讀理解上述內(nèi)容,解答下列問題:

問題1:已知一個(gè)矩形的面積為4,其中一邊長為x,則另一邊長為,周長為2(),求當(dāng)x= 時(shí),周長的最小值為 ;

問題2:已知函數(shù))與函數(shù)),

當(dāng)x= 時(shí),的最小值為 ;

問題3:某民辦學(xué)校每天的支出總費(fèi)用包含以下三個(gè)部分:一是教職工工資4900元;二是學(xué)生生活費(fèi)成本每人10元;三是其他費(fèi)用.其中,其他費(fèi)用與學(xué)生人數(shù)的平方成正比,比例系數(shù)為0.01.當(dāng)學(xué)校學(xué)生人數(shù)為多少時(shí),該校每天生均投入最低?最低費(fèi)用是多少元?(生均投入=支出總費(fèi)用÷學(xué)生人數(shù))

【答案】(1)2,8;(2)2,6;(3)700,24.

【解析】

試題分析:問題1:由閱讀2得到的范圍,進(jìn)一步得到周長的最小值;

問題2:把變形為,由閱讀2得到的范圍,進(jìn)一步即可求解;

問題3:可設(shè)學(xué)校學(xué)生人數(shù)為x人,根據(jù)生均投入=支出總費(fèi)用÷學(xué)生人數(shù),列出代數(shù)式,再由閱讀2得到范圍,從而求解.

試題解析:問題1:),解得x=2,x=2時(shí),有最小值為=4.故當(dāng)x=2時(shí),周長的最小值為2×4=8;

問題2:),),=,,解得x=2,x=2時(shí),有最小值為=6;

問題3:設(shè)學(xué)校學(xué)生人數(shù)為x人,則生均投入===),解得x=700,x=700時(shí),有最小值為=1400,故當(dāng)x=700時(shí),生均投入的最小值為10+0.01×1400=24元.

答:當(dāng)學(xué)校學(xué)生人數(shù)為700時(shí),該校每天生均投入最低,最低費(fèi)用是24元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】化簡:(2a+b)(b-2a)-(a-3b)2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD,點(diǎn)E,F(xiàn)分別在AB,CD上,連接EF,AEF、CFE的平分線交于點(diǎn)G,BEF、DFE的平分線交于點(diǎn)H.

(1)求證:四邊形EGFH是矩形;

(2)小明在完成(1)的證明后繼續(xù)進(jìn)行了探索,過G作MNEF,分別交AB,CD于點(diǎn)M,N,過H作PQEF,分別交AB,CD于點(diǎn)P,Q,得到四邊形MNQP,此時(shí),他猜想四邊形MNQP是菱形,請(qǐng)?jiān)谙铝锌蛑醒a(bǔ)全他的證明思路.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知x2是一元二次方程(m2x2+4xm20的一個(gè)根,則m的值為( 。

A.2B.02C.04D.0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次函數(shù)y= -2x+4的圖象與坐標(biāo)軸所圍成的三角形面積是 _____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀理解拋物線上任意一點(diǎn)到點(diǎn)(0,1)的距離與到直線y=﹣1的距離相等,你可以利用這一性質(zhì)解決問題.

問題解決

如圖,在平面直角坐標(biāo)系中,直線與y軸交于C點(diǎn),與函數(shù)的圖象交于A,B兩點(diǎn),分別過A,B兩點(diǎn)作直線y=﹣1的垂線,交于E,F(xiàn)兩點(diǎn).

(1)寫出點(diǎn)C的坐標(biāo),并說明∠ECF=90°;

(2)在△PEF中,M為EF中點(diǎn),P為動(dòng)點(diǎn).

①求證:

②已知PE=PF=3,以EF為一條對(duì)角線作平行四邊形CEDF,若1<PD<2,試求CP的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若點(diǎn)P(a,b)在第二象限,則點(diǎn)M(baab)( )

A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圓錐的底面半徑為5,高為12,則它的側(cè)面積為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:如圖1,點(diǎn)M,N把線段AB分割成AM,MN和BN,若以AM,MN,BN為邊的三角形是一個(gè)直角三角形,則稱點(diǎn)M,N是線段AB的勾股分割點(diǎn).

(1)已知點(diǎn)M,N是線段AB的勾股分割點(diǎn),若AM=2,MN=3,求BN的長;

(2)如圖2,在ABC中,F(xiàn)G是中位線,點(diǎn)D,E是線段BC的勾股分割點(diǎn),且EC>DE≥BD,連接AD,AE分別交FG于點(diǎn)M,N,求證:點(diǎn)M,N是線段FG的勾股分割點(diǎn);

(3)已知點(diǎn)C是線段AB上的一定點(diǎn),其位置如圖3所示,請(qǐng)?jiān)贐C上畫一點(diǎn)D,使點(diǎn)C,D是線段AB的勾股分割點(diǎn)(要求尺規(guī)作圖,保留作圖痕跡,畫一種情形即可);

(4)如圖4,已知點(diǎn)M,N是線段AB的勾股分割點(diǎn),MN>AM≥BN,AMC,MND和NBE均為等邊三角形,AE分別交CM,DM,DN于點(diǎn)F,G,H,若H是DN的中點(diǎn),試探究,的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案