菱形ABCD中,∠A=60°,較短對角線長為4cm,則菱形ABCD的周長為________cm.

16
分析:根據(jù)菱形性質得出BC=CD=AB=AD,的得出等邊三角形ABD,推出AB=AD=BD=4cm,即可求出答案.
解答:
解:∵四邊形ABCD是菱形,
∴BC=CD=AB=AD,
∵∠A=60°,AB=AD,
∴△ABD是等邊三角形,
∴AB=AD=BC=4cm,
∴AB=AD=BC=CD=4cm,
△菱形ABCD的周長是AB+AD+BC+CD=16cm,
故答案為:16.
點評:本題考查了菱形的性質和等邊三角形的性質和判定,注意:菱形的四條邊都相等,等邊三角形的三條邊相等,有一個角是60°的等腰三角形是等邊三角形.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

5、如圖,在菱形ABCD中,點E,F(xiàn)分別是AB,AC的中點,如果EF=3,那么菱形ABCD的周長是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

23、如圖,在菱形ABCD中,∠ADB與∠ABD的大小關系是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

18、已知:如圖,菱形ABCD中,E、F分別是CB、CD上的點,且BE=DF.求證:∠AEF=∠AFE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖:菱形ABCD中,∠BAD=120°,動點P在直線BC上運動,作∠APM=60°,且直線PM與直線CD相交于點Q,Q點到直線BC的距離為QH.
精英家教網(wǎng)
(1)若P在線段BC上運動,求證CP=DQ;
(2)若P在線段BC上運動,探求線段AC、CP、CH的一個數(shù)量關系,并證明你的結論;
(3)若動點P在直線BC上運動,菱形ABCD周長為8,AQ=
6
,求QH.(可使用備用圖)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,菱形ABCD中,AB=10,sinA=
4
5
,點E在AB上,AE=4,過點E作EF∥AD,交CD于F,點P從點A出發(fā)以1個單位/s的速度沿著線段AB向終點B運動,同時點Q從點E出發(fā)也以1個單位/s的速度沿著線段EF向終點F運動,設運動時間為t(s).
(1)填空:當t=5時,PQ=
2
5
2
5
;
(2)當BQ平分∠ABC時,直線PQ將菱形的周長分成兩部分,求這兩部分的比;
(3)以P為圓心,PQ長為半徑的⊙P是否能與直線AD相切?如果能,求此時t的值;如果不能,說明理由.

查看答案和解析>>

同步練習冊答案