點(diǎn)P是x軸正半軸的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作x軸的垂線(xiàn)PA交雙曲線(xiàn)y=
1
x
于點(diǎn)A,連接OA.
(1)如圖甲,當(dāng)點(diǎn)P在x軸的正方向上運(yùn)動(dòng)時(shí),Rt△AOP的面積大小是否變化?若不變,請(qǐng)求出Rt△AOP的面積;若改變,試說(shuō)明理由;
(2)如圖乙,在x軸上的點(diǎn)P的右側(cè)有一點(diǎn)D,過(guò)點(diǎn)D作x軸的垂線(xiàn)交雙曲線(xiàn)于點(diǎn)B,連接BO交AP于點(diǎn)C,設(shè)△AOP的面積是S1,梯形BCPD的面積為S2,則S1與S2的大小關(guān)系是S1
S2(選填“>”、“<”、“=”);
(3)如圖丙,AO的延長(zhǎng)線(xiàn)與雙曲線(xiàn)y=
1
x
的另一個(gè)交點(diǎn)為F,F(xiàn)H垂直于x軸,垂足為點(diǎn)H,連接AH,PF,試證明四邊形APFH的面積為一個(gè)常數(shù).
精英家教網(wǎng)
分析:(1)本題還可依據(jù)比例系數(shù)k的幾何意義,得出兩個(gè)三角形的面積都等于
1
2
|k|=
1
2
,因而當(dāng)點(diǎn)P在x軸的正方向上運(yùn)動(dòng)時(shí),Rt△AOP的面積大小不變;
(2)根據(jù)(1)可以得到△BDO的面積,因而S1>S2
解答:解:(1)Rt△AOP的面積不變,S△AOP=xy=x×
1
x
×
1
2
=
1
2
;

(2)根據(jù)△AOP的面積等于S1,△BOD的面積大于S2,S1>S2;

(3)設(shè)A的坐標(biāo)是(a,b),根據(jù)反比例函數(shù)是中心對(duì)稱(chēng)圖形,因而F點(diǎn)的坐標(biāo)是(-a,-b),則AP=b,HP=2a,則四邊形APFH的面積是2ab,據(jù)(a,b)在雙曲線(xiàn)y=
1
x
的圖象上,因而ab=1,則四邊形APFH的面積是2ab=2.
點(diǎn)評(píng):本題考查函數(shù)圖象交點(diǎn)坐標(biāo)的求法及反比例函數(shù)的比例系數(shù)k與其圖象上的點(diǎn)與原點(diǎn)所連的線(xiàn)段、坐標(biāo)軸、向坐標(biāo)軸作垂線(xiàn)所圍成的直角三角形面積S的關(guān)系,即S=
1
2
|k|.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,將一矩形OABC放在直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn).點(diǎn)A在y軸正半軸上.點(diǎn)E是邊AB上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)A、B重合),過(guò)點(diǎn)E的反比例函數(shù)y=
kx
(x>0)
的圖象與邊BC交于點(diǎn)F.
(1)若△OAE、△OCF的而積分別為S1、S2.且S1+S2=2,求k的值.
(2)若OA=2,OC=4,當(dāng)四邊形AOFE的面積最大時(shí),求點(diǎn)E、F的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•湖州一模)如圖,在平面直角坐標(biāo)系xOy中,我們把橫、縱坐標(biāo)都是整數(shù)的點(diǎn)叫做整點(diǎn).已知點(diǎn)A(0,3),點(diǎn)B是x軸正半軸上的整點(diǎn),記
△AOB內(nèi)部(不包括邊界)的整點(diǎn)個(gè)數(shù)為m.當(dāng)點(diǎn)B的橫坐標(biāo)為3n(n為正整數(shù))時(shí),m=
3n-2
3n-2
(用含n的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•梓潼縣一模)如圖,在直角坐標(biāo)系中,點(diǎn)A是x軸正半軸上的一個(gè)定點(diǎn),點(diǎn)B是雙曲線(xiàn)y=
3
x
(x>0)上的一個(gè)動(dòng)點(diǎn),當(dāng)點(diǎn)B的橫坐標(biāo)逐漸增大時(shí),△OAB的面積將會(huì)( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•南通一模)已知:如圖,直y=2x+b交x軸于點(diǎn)B,交y軸于點(diǎn)C,點(diǎn)A為x軸正半軸上一點(diǎn),AO=CO,△ABC的面積為12.
(1)求b的值;
(2)若點(diǎn)P是線(xiàn)段AB中垂線(xiàn)上的點(diǎn),是否存在這樣的點(diǎn)P,使△PBC成為直角三角形?若存在,試直接寫(xiě)出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,試說(shuō)明理由;
(3)點(diǎn)Q為線(xiàn)段AB上一個(gè)動(dòng)點(diǎn)(點(diǎn)Q與點(diǎn)A、B不重合),QE∥AC,交BC于點(diǎn)E,以QE為邊,在點(diǎn)B的異側(cè)作正方形QEFG.設(shè)AQ=m,△ABC與正方形QEFG的重疊部分的面積為S,試求S與m之間的函數(shù)關(guān)系式,并寫(xiě)出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年中考數(shù)學(xué)模擬卷(6)(解析版) 題型:解答題

(2008•西城區(qū)一模)已知拋物線(xiàn)C1:y=ax2-2amx+am2+2m+1(a>0,m>1)的頂點(diǎn)為A,拋物線(xiàn)C2的對(duì)稱(chēng)軸是y軸,頂點(diǎn)為點(diǎn)B,且拋物線(xiàn)C1和C2關(guān)于P(1,3)成中心對(duì)稱(chēng).
(1)用m的代數(shù)式表示拋物線(xiàn)C1的頂點(diǎn)坐標(biāo);
(2)求m的值和拋物線(xiàn)C2的解析式(含有字母a);
(3)設(shè)拋物線(xiàn)C2與x軸正半軸的交點(diǎn)是C,當(dāng)△ABC為等腰三角形時(shí),求a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案