【題目】如圖,扇形OAB中,∠AOB=60°,OA=4,點(diǎn)C為弧AB的中點(diǎn),D為半徑OA上一點(diǎn),點(diǎn)A關(guān)于直線CD的對(duì)稱點(diǎn)為E,若點(diǎn)E落在半徑OA上,則OE=______.
【答案】4﹣4
【解析】
連接OC,作EF⊥OC于F,根據(jù)圓心角、弧、弦的關(guān)系定理得到∠AOC=30°,根據(jù)等腰三角形的性質(zhì)、三角形內(nèi)角和定理得到∠ECF=45°,根據(jù)正切的定義列式計(jì)算,得到答案.
連接OC,作EF⊥OC于F,
∵點(diǎn)A關(guān)于直線CD的對(duì)稱點(diǎn)為E,點(diǎn)E落在半徑OA上,
∴CE=CA,
∵=,
∴∠AOC=∠AOB=30°,
∵OA=OC,
∴∠OAC=∠OCA=75°,
∵CE=CA,
∴∠CAE=∠CEA=75°,
∴∠ACE=30°,
∴∠ECF=∠OCA-∠ACE=75°-30°=45°,
設(shè)EF=x,則FC=x,
在Rt△EOF中,tan∠EOF=,
∴OF==,
由題意得,OF+FC=OC,即x+x=4,
解得,x=2﹣2,
∵∠EOF=30°,
∴OE=2EF=4﹣4,
故答案為:4﹣4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2019年全國(guó)青少年禁毒知識(shí)競(jìng)賽開始以來,某市青少年學(xué)生踴躍參加,掀起了學(xué)習(xí)禁毒知識(shí)的熱潮,禁毒知識(shí)競(jìng)賽的成績(jī)分為四個(gè)等級(jí):優(yōu)秀,良好,及格,不及格.為了了解該市廣大學(xué)生參加禁毒知識(shí)競(jìng)賽的成績(jī),抽取了部分學(xué)生的成績(jī),根據(jù)抽查結(jié)果,繪制了如下兩幅不完整的統(tǒng)計(jì)圖:
(1)本次抽查的人數(shù)是 ;扇形統(tǒng)計(jì)圖中不及格學(xué)生所占的圓心角的度數(shù)為 ;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若某校有2000名學(xué)生,請(qǐng)你根據(jù)調(diào)查結(jié)果估計(jì)該校學(xué)生知識(shí)競(jìng)賽成績(jī)?yōu)椤皟?yōu)秀”和“良好”兩個(gè)等級(jí)共有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,函數(shù)()的圖象經(jīng)過邊長(zhǎng)為2的正方形OABC的頂點(diǎn)B,如圖,直線與()的圖象交于點(diǎn)D(點(diǎn)D在直線BC的上方),與x軸交于點(diǎn)E .
(1)求k的值;
(2)橫、縱坐標(biāo)都是整數(shù)的點(diǎn)叫做整點(diǎn).記()的圖象在點(diǎn)B,D之間的部分與線段AB,AE,DE圍成的區(qū)域(不含邊界)為W.
①當(dāng)時(shí),直接寫出區(qū)域W內(nèi)的整點(diǎn)個(gè)數(shù);
②若區(qū)域W內(nèi)恰有3個(gè)整點(diǎn),結(jié)合函數(shù)圖象,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,PA、PB與⊙O相切,切點(diǎn)分別為A、B,PA=3,∠P=60°,若AC為⊙O的直徑,則圖中△OBC的面積為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,已知AB=BC=CA=4cm,AD⊥BC于D,點(diǎn)P,Q分別從BC兩點(diǎn)同時(shí)出發(fā),其中點(diǎn)P沿BC向終點(diǎn)C運(yùn)動(dòng).速度為1cm/s;點(diǎn)Q沿CA、AB向終點(diǎn)B運(yùn)動(dòng),速度為2cm/s,設(shè)它們運(yùn)動(dòng)的時(shí)間為x(s).
(1)求x為何值時(shí),PQ⊥AC;
(2)設(shè)△PQD的面積為y(cm2),當(dāng)0<x<2時(shí),求y與x的函數(shù)關(guān)系式;
(3)探索以PQ為直徑的圓與AC的位置關(guān)系,請(qǐng)寫出相應(yīng)位置關(guān)系的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國(guó)互聯(lián)網(wǎng)發(fā)展走到了世界的前列,尤其是電子商務(wù),據(jù)市場(chǎng)調(diào)查,天貓超市在銷售一種進(jìn)價(jià)為每件40元的護(hù)眼臺(tái)燈中發(fā)現(xiàn):每月銷售量y(件)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系如圖所示:
(1)當(dāng)銷售單價(jià)定為50元時(shí),求每月的銷售件數(shù);
(2)設(shè)每月獲得的利潤(rùn)為W(元),求利潤(rùn)的最大值;
(3)由于市場(chǎng)競(jìng)爭(zhēng)激烈,這種護(hù)眼燈的銷售單價(jià)不得高于75元,如果要每月獲得的利潤(rùn)不低于8000元,那么每月的成本最少需要多少元?(成本=進(jìn)價(jià)×銷售量)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面所示各圖是在同一直角坐標(biāo)系內(nèi),二次函數(shù)y=+(a+c)x+c與一次函數(shù)y=ax+c的大致圖象.正確的( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題中為真命題的是( 。
A.長(zhǎng)度為的三條線段若滿足,則這三條線段一定能組成三角形
B.一個(gè)三角形的三個(gè)內(nèi)角度數(shù)之比為3:4:5,則這個(gè)三角形是直角三角形
C.正六邊形的外角和大于正五邊形的外角和
D.若與相似,且周長(zhǎng)相等,則與全等
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣x+2分別交x軸、y軸于點(diǎn)A、B.點(diǎn)C的坐標(biāo)是(﹣1,0),拋物線y=ax2+bx﹣2經(jīng)過A、C兩點(diǎn)且交y軸于點(diǎn)D.點(diǎn)P為x軸上一點(diǎn),過點(diǎn)P作x軸的垂線交直線AB于點(diǎn)M,交拋物線于點(diǎn)Q,連結(jié)DQ,設(shè)點(diǎn)P的橫坐標(biāo)為m(m≠0).
(1)求點(diǎn)A的坐標(biāo).
(2)求拋物線的表達(dá)式.
(3)當(dāng)以B、D、Q,M為頂點(diǎn)的四邊形是平行四邊形時(shí),求m的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com