分析:過點(diǎn)A作AD⊥BC于點(diǎn)D,交B
1C
1于點(diǎn)E,交B
2C
2于點(diǎn)F,由B
1C
1所在四邊形是△ABC的內(nèi)接正方形,易證得△AB
1C
1∽△ABC,由在△ABC中,BC=3,S
△ABC=3,可求得高AD的長,然后由相似三角形對(duì)應(yīng)高的比等于相似比,求得B
1C
1的長,同理可求得B
2C
2與B
3C
3的長,觀察即可得規(guī)律:B
nC
n=3×
()n 解答:解:過點(diǎn)A作AD⊥BC于點(diǎn)D,交B
1C
1于點(diǎn)E,交B
2C
2于點(diǎn)F,
∵B
1C
1所在四邊形是△ABC的內(nèi)接正方形,
∴B
1C
1∥BC,AD⊥B
1C
1,ED=B
1C
1,
∴△AB
1C
1∽△ABC,
∵在△ABC中,BC=3,S
△ABC=3,
∴S
△ABC=
BC•AD=
×3AD=3,
∴AD=2.
設(shè)B
1C
1=x,則AE=2-x,
∵△AB
1C
1∽△ABC,
∴
=
,即
=
,
解得,x=
.
同理:△AB
2C
2∽△AB
1C
1,
∴
=
,
∵AE=2-
=
,
∴設(shè)B
2C
2=y,則AF=
-y,
∴y=
,
即B
2C
2=
=3×
()2,
同理:B
3C
3=3×
()3;
∴B
nC
n=3×
()n;
故答案是:
;3×
()n.
點(diǎn)評(píng):此題考查了相似三角形的判定與性質(zhì)與正方形的性質(zhì).此題難度較大,屬于規(guī)律性題目,注意掌握數(shù)形結(jié)合思想與方程思想的應(yīng)用.