已知m,n是關(guān)于x的方程(k+1)x2-x+1=0的兩個(gè)實(shí)數(shù)根,且滿足k+1=(m+1)(n+1),則實(shí)數(shù)k的值是    
【答案】分析:先根據(jù)一元二次方程的根與系數(shù)的關(guān)系得到mn與m+n的值,代入k+1=(m+1)(n+1),求出k的值,再根據(jù)根的判別式判斷出k的取值范圍,最后結(jié)合前者確定k的最終取值.
解答:解:∵a=k+1,b=-1,c=1,m與n是方程的兩根,
∴m+n==,
,
∴k+1=(m+1)(n+1)=mn+m+n+1==,
即得到方程k=
再化簡(jiǎn)得k2+k-2=0,
解得k1=1,k2=-2,
又∵△=b2-4ac=(-1)2-4(k+1)×1=-4k-3≥0,
∴k≤,且k≠-1
∴k=-2.
點(diǎn)評(píng):此題不僅考查了根的判別式的應(yīng)用,還利用了根與系數(shù)的關(guān)系以及解分式方程,有一定的難度.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知x1、x2是關(guān)于x的一元二次方程x2-(2m+3)x+m2=0的兩個(gè)不相等的實(shí)數(shù)根,且滿足x1+x2=m2,則m的值是(  )
A、-1B、3C、3或-1D、-3或1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知a、b是關(guān)于x的方程x2-(2k+1)x+k(k+1)=0的兩個(gè)實(shí)數(shù)根,則a2+b2的最小值是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知a、b是關(guān)于x的一元二次方程kx2+2(k-3)x+k+3=0的兩個(gè)實(shí)數(shù)根,其中k為非負(fù)整數(shù),點(diǎn)A(a,b)是一次函數(shù)y=(k-2)x+m與反比例函數(shù)y=
nx
的圖象的交點(diǎn),且m、n為常數(shù).
(1)求k的值;
(2)求一次函數(shù)與反比例函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•南通一模)已知x1,x2是關(guān)于x的一元二次方程x2-2x-1=0的兩個(gè)實(shí)數(shù)根,則
x
2
1
+
x
2
2
-x1x2=
7
7

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀下列材料,并解答問題:
在一元二次方程ax2+bx+c=0(a≠0)中,如果b2-4ac≥0時(shí),那
么它的兩個(gè)根是x1=
-b+
b2-4ac
2a
,x2=
-b-
b2-4ac
2a
所以x1+x2=
(-b+
b2-4ac
)+(-b-
b2-4ac
)
2a
=
-2b
2a
=-
b
a
x1x2=
(-b+
b2-4ac
)•(-b-
b2-4ac
)
2a•2a
=
b2-(b2-4ac)
4a2
=
c
a

由此可見,一元二次方程的兩根的和、兩根的積是由一元二次方程的系數(shù)a、b、c確定的.運(yùn)用上述關(guān)系解答下列問題:
(1)已知一元二次方程2x2-6x-1=0的兩個(gè)根分別為x1、x2,則x1+x2=
3
3
,x1x2=
-
1
2
-
1
2
,
1
x1
+
1
x2
=
-6
-6

(2)已知x1、x2是關(guān)于x的方程x2-x+a=0的兩個(gè)實(shí)數(shù)根,且
x
2
1
+
x
2
2
=7
,求a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案