【題目】如圖①,△ABC是正三角形,△BDC是頂角∠BDC=120°的等腰三角形,以D為頂點(diǎn)作一個(gè)60°角,角的兩邊分別交AB、AC邊于M、N兩點(diǎn),連接MN.
探究:在下面兩種條件下,線段BM、MN、NC之間的關(guān)系,并加以證明.
①AN=NC(如圖②); 、DM//AC(如圖③).
思考:若點(diǎn)M、N分別是射線AB、CA上的點(diǎn),其它條件不變,再探線段BM、MN、NC之間的關(guān)系,在圖④中畫出圖形,并說(shuō)明理由.
【答案】(1)MN=NC+BM,證明見解析
(2)MN=NC-BM,證明見解析
【解析】
本題是一個(gè)典型的“半角旋轉(zhuǎn)”模型。①和②情況其實(shí)是一樣的,延長(zhǎng)AC至E,使得CE=BM并連接DE,構(gòu)造全等三角形,找到MD=DE,∠BDM=∠CDE,BM=CE,再進(jìn)一步證明△DMN≌△DEN,進(jìn)而得到MN=BM+NC;
思考題:MN=NC-BM.仿(1)的思路運(yùn)用截長(zhǎng)法證明.
(1)MN=BM+NC.理由如下:
延長(zhǎng)AC至E,使得CE=BM,連接DE,如圖所示:
∵△BDC為等腰三角形,△ABC為等邊三角形,
∴BD=CD,∠DBC=∠DCB,∠MBC=∠ACB=60°,
又BD=DC,且∠BDC=120°,
∴∠DBC=∠DCB=30°,
∴∠ABC+∠DBC=∠ACB+∠DCB=60°+30°=90°,
∴∠MBD=∠ECD=90°.
∴△MBD≌△ECD(SAS),
∴MD=DE,∠BDM=∠CDE,BM=CE,
又∵∠BDC=120°,∠MDN=60°,
∴∠BDM+∠NDC=∠BDC-∠MDN=60°,
∴∠CDE+∠NDC=60°,即∠NDE=60°,
∵∠MDN=∠NDE=60°.
∴△DMN≌△DEN(SAS),
∴MN=EN.
又NE=NC+CE,BM=CE,
∴MN=BM+NC;
(2)MN=NC-BM.
證明:在CA上截取CE=BM.
由(1)知:∠DCE=∠DBM=90°,DC=DB.
又CE=BM,
∴△DCE≌△DBM (SAS)
∴∠CDE=∠BDM,DM=DE.
∴∠MDN=∠EDN=60°.
∴△MDN≌△EDN (SAS)
∴NM=NE.
∵NE=NC-CE,CE=BM,
∴MN=NC-BM.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一架云梯長(zhǎng)25 m,斜靠在一面墻上,梯子靠墻的一端距地面24 m.
(1)這個(gè)梯子底端離墻有多少米?
(2) 如果梯子的頂端下滑了4m,那么梯子的底部在水平方向也滑動(dòng)了4m嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】作圖題:已知點(diǎn)A,點(diǎn)B,直線l及l上一點(diǎn)M.
(1)如圖1,連接MA,并在直線l上作出一點(diǎn)N,使得點(diǎn)N在點(diǎn)M的左邊,且滿足MN=MA,作線段MN的中點(diǎn)C,連接BC;
(2)如圖2,請(qǐng)?jiān)谥本l上確定一點(diǎn)O,使點(diǎn)O到點(diǎn)A與點(diǎn)O到點(diǎn)B的距離之和最短,并寫出畫圖的依據(jù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,E,F(xiàn)是正方形ABCD的對(duì)角線AC上的兩點(diǎn),且AE=CF.
(1)求證:四邊形BEDF是菱形;
(2)若正方形ABCD的邊長(zhǎng)為4,AE=,求菱形BEDF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,點(diǎn)D、E、F分別在AB、BC、AC邊上,且BE=CF,BD=CE.
(1)求證:△DEF是等腰三角形;
(2)當(dāng)∠A=50°時(shí),求∠DEF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】讓我們一起來(lái)探究“邊數(shù)大于或等于3的多邊形的內(nèi)角和問(wèn)題”.
規(guī)定:連接多邊形不相鄰的兩個(gè)頂點(diǎn)的線段叫做多邊形的對(duì)角線.
嘗試:從多邊形某一個(gè)頂點(diǎn)出發(fā)的對(duì)角線可以把一個(gè)多邊形分成若干個(gè)三角形,…….這樣,就把“多邊形內(nèi)角和問(wèn)題”轉(zhuǎn)化為“三角形內(nèi)角和問(wèn)題”了.……
(1)請(qǐng)你在下面表格中,試一試,做一做,并將表格補(bǔ)充完整:
名稱 | 圖形 | 內(nèi)角和 |
三角形 | 180° | |
四邊形 | 2180°=360° | |
五邊形 | ||
六邊形 | ||
... | ... | …… |
(2)根據(jù)上面的表格,請(qǐng)你猜一猜,七邊形的內(nèi)角和等于 ;…….如果一個(gè)多邊形有n條邊,請(qǐng)你用含有n的代數(shù)式表示這個(gè)多邊形的內(nèi)角和 .
(3)如果一個(gè)多邊形的內(nèi)角和是1260°,請(qǐng)判斷這個(gè)多邊形是幾邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】窗戶的形狀如圖所示(圖中長(zhǎng)度單位:cm),其上部是半圓形,下部是邊長(zhǎng)相同的四個(gè)小正方形,已知下部小正方形的邊長(zhǎng)是acm,計(jì)算:
(1)窗戶的面積;
(2)窗戶的外框的總長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)有A,B兩枚均勻的骰子(骰子的每個(gè)面上分別標(biāo)有數(shù)字1,2,3,4,5,6).以小莉擲出A骰子正面朝上的數(shù)字為x、小明擲出B骰子正面朝上的數(shù)字為y來(lái)確定點(diǎn)P(x,y),那么它們各擲一次所確定的點(diǎn)P在已知拋物線y=-x2+5x上的概率為__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,,C點(diǎn)在EF上,,BC平分,且.下列結(jié)論:
①AC平分;②;③;④.其中結(jié)論正確的個(gè)數(shù)有( )
A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com